IOT BASED WATER AND SOIL QUALITY MONITORING SYSTEM

Ganesh Babu Loganathan
Head of the Department, Department of Mechatronics Engineering, Tishk International University, Erbil, Iraq.

Dr. E. Mohan
Principal, P.T.LEE. Chengalvaraya Naicker College of Engineering and Technology, Kanchipuram, Tamilnadu, India.

R. Siva Kumar
Research Scholar, Shri JJT University, Jhunjhunu, Rajasthan, India.

ABSTRACT
The traditional technique for testing water and soil quality is to accumulate their examples and send to the work to check and break down. This system is tedious and not conservative. The water quality estimating framework that we’ve got actual checks the character of water endlessly through appropriate sensors. In standard farming, development of the plants is used to continue and upgrade human life. The event in our country is greatly diminished owing to absence of intrigue, shortage of farming land and water and many agriculturists with their own advantage they need been doing the event at this. In any case, that to boot respects less creation owing to absence of attentiveness regarding the land waterlessness, no opportune chemical uses and affordable harvests for the land. The Wi-fi module exchanges data gathered by the sensors to the controller, and exchanges the data to the computer. This system continuously monitoring the contamination of the water assets, soil quality.

Keywords: PH, Conductivity, Temperature, Turbidity, Moisture Sensor, IOT, Wi-fi.

Cite this Article: Ganesh Babu Loganathan, Dr. E. Mohan and R. Siva Kumar, Iot Based Water and Soil Quality Monitoring System, International Journal of Mechanical Engineering and Technology, 10(02), 2019, pp. 537–541
http://www.iaeme.com/IJMET/issues.asp?JType=IJMET&VType=10&IType=02

1. INTRODUCTION
Water is the most essential typical resource that has been gifted to the humankind. Water quality checking helps in evaluating the nature and level of pollution control required, and amleness of sulling control measures. Water quality watching structures need to quickly perceive any changes in the idea of water and report the proportional to the specialists for brief movement.
Iot Based Water and Soil Quality Monitoring System

structure is proposed for steady on area distinguishing and progressing uncovering of water quality data where the experts can get to the data on the propelled cell phone/PC through Internet. Indian horticultural division is in a troublesome stage because of the absence of automation and shortage of mechanical advances. In India, the farming innovation is work escalated, while the cutting edge horticulture innovation is predominantly capital concentrated. Specialists says IoT could assume a urgent job in addressing this need.

Joined with enormous information and cloud, it can do as such by enhancing the effective utilization of sources of info like soil, manures and pesticides, observing the domesticated animals, foreseeing sicknesses, checking capacity limits like water tanks, and ensuring that crops are sustained and watered well. Agriculturists need assortment of information and administrations to enhance crop creation dependent ashore, crop, atmosphere conditions, account accessibility, water system offices and so forth. Distributed computing has been utilized for capacity of agri business information by Government and private agencies.

2. LITRATURE SURVEY

M N Barabde, [1] proposed a System which is utilized for determining the various parameters of water such as temperature, PH, conductivity etc. JaytiBhatt,JigneshPatoliya[2] developed a IOT(Internet of Things) model which ensures the quality of water. The purposeful characteristics from the sensors are set up by microcontroller and these took care of characteristics are transmitted remotely profoundly controller that is raspberry pi using Zigbee.


Agribusiness is considered as the reason of life for the human species and it is the essential wellspring of sustenance grains and other rough materials. It had negligible introduction to advancement anyway with development accomplishing every niche and corner of the globe, the country scene is in like manner moving towards modernization. Headways [7] like Cloud, Internet of Things (IoT), and Big Data are adjusting the overall cultivating industry provoking a development in yield productivity. In such a circumstance, an Internet of Things system for cultivating is ended up being the latest development design inside the business.

There are three remarkable systems has been passed on to test the earth, they are dampness test, breathe test and mass thickness test. Soil dampness test [8] is to be performed first since it accept a key occupation consequently of water and warmth essentialness between the land surface and the atmosphere, through scattering and plant transpiration. A productive undertaking has encountered to measure the earth dampness in regards to time and exchanged the data to the Cloud [9].Today Wi-Fi is available in numerous business, present day and open regions with quick web affiliation.

3. PROPOSED SYSTEM

The proposed system uses following sensors. pH, Moisture, Electric Conductivity (EC) and turbidity to get the data parameters. These sensors are arranged in the water will analyze the idea of the water resources. The checked substance is used to gauge the idea of water. The examined data is taken care of through the microcontroller and traded through the Wi-Fi module to the central server.
In this system it makes use of four sensors (Turbidity, pH, conductivity) and the microcontroller related with web of things. The Processing module microcontroller, and the transmission module GSM. The sensors get the data in the comparability signals. The ADC converter which covers the analog value to digital value of the sensed parameters. The modernized signs are passed to the controller which is as one with the transmission module.

3.1. PH Sensor
It is used to determine the acidity or alkalinity of the solution. pH is the concentration of hydrogen ions in the solution. A solution containing more H+ ions remains acidic while the solution containing more OH- ions remains alkaline. pH value of solutions ranges from 1 to 14. pH electrode Solution having pH value 1 will be the highly acidic and with pH value 14 will be highly basic. The acidity and alkalinity of any solution depends upon the concentration of hydrogen ions (H+) and hydroxyl ions (OH-) respectively. A neutral solution as pure water has pH 7.

3.2. Electric Conductivity Sensor
An EC meter makes testing and monitoring the electrical conductivity of water. EC water conductivity test equipment can be used in the field to take direct measurements of water. The probe that is inserted into the water sample applies a voltage between electrodes. The drop in voltage measures the resistance of water, which is converted to conductivity. Conductivity is reciprocal to resistance and is measured as the amount of conductance over a certain distance.
3.3. Turbidity sensor
Turbidity sensor is used in measuring the standard of water in rivers and streams, wastewater and the efficient measurements, managing instrumentation for settling ponds, sediment transportation research are also in the laboratory measurements.

3.4. Moisture sensor
The soil moisture sensor consists of two probes which are used to measure the volumetric content of water. When there is more water, the soil will conduct more electricity which means that there will be less resistance. Therefore, the moisture level will be higher. Dry soil conducts electricity poorly, so when there will be less water, then the soil will conduct less electricity which means that there will be more resistance. Therefore, the moisture level will be lower.

4. CONCLUSION
The remote monitoring of the soil pH rate and its temperature rate has been done with the very minimal cost. The regular updates provide knowledge about the field in terms of water content in the soil. It efficiently manages the energy and human resources. Wireless monitoring along with low power consumption makes it a useful system for the farmer to incorporate and use it in the agricultural farm. IoT is changing the future of technologies and how objects behave around us.
REFERENCES


[9] Mr. N. Sampathraja, Dr. L. Ashok Kumar, Mr. K. Vishnu Murthy, Ms. V. Kirubalakshmi and Ms. C. Muthumaniyarasi, Iot Based Underground Cable Fault Detector, International Journal of Mechanical Engineering and Technology 8(8), 2017, pp. 1299–1309.


