SAVING ENERGY BY USING INSULATION

Dr. Hassan K. Abdullah
Prof., Mechanical Engineering Department, College of Engineering,
Wasit University, Kut- Iraq

Sajad M. Aboud
MS.c Candidate, Mechanical Engineering Department, College of Engineering,
Wasit University, Kut- Iraq

ABSTRACT

The present work shows the importance of using thermal insulation for new building walls. To decrease cooling and heating load, so the electric power consumption for air-conditioning equipment drop to more than 50% of that without insulation. The experimental work includes building of two models of (1X1X1) m width, length and height located at (32.5 latitude) Kut city, Iraq. The model is set to be each wall faced south, east, north and west direction exactly. The models built from brick (24cm), thermo-stone (20cm) and sandwich panel (5cm). Another type of insulation material were tested and compared with normal brick wall is styropor. The heat gain was calculated for all the above insulations compared with brick model. The results showed that the best model in energy saving is the sandwich panel model with about 70% energy save, while the thermo-stone model gives 33% and outside styropor 54.28%.

General Terms: Q₀: Heat dissipation rate. (w), A: Area (m²), R: Thermal resistance (m²°C/W), T : Time, Temperature (Sec, °C), K: Thermal conductivity (W/m. °C),

Key words: Thermal Insulation, Saving Energy by Insulation, Composite Insulation.

Cite this Article Dr. Hassan K. Abdullah and Sajad M. Aboud, Saving energy by Using Insulation. International Journal of Mechanical Engineering and Technology, 7(3), 2016, pp. 01–12.
http://www.iaeme.com/currentissue.asp?JType=IJMET&VType=7&IType=3
1. INTRODUCTION

Iraq is located in the sub-tropical region hot and dry, which is dominated by desert climate. Where, the summer lasts for more than seven months. The sun shines during these months for long time (more than a 12hr / day), and the shadow temperature reaches more than (45˚C) so the external wall of models exposed to thermal waves and its strength proportion to the time [1]. The outside walls and roofs should be protected from radiation of the sun and the changing climatic conditions by an appropriate thermal insulation material. The radiation of sun is more than 780 watts/m² on the horizontal surfaces in the summer season which leads to uncomfortable inside temperature. The cooling and heating equipment are considerably decreases in case of using thermal insulation materials which leads to save the consumption of electrical energy.

According to World Watch Institute Estimations, buildings are responsible for 40% of the total energy consumption worldwide with a greater percentage in the industrialized and urbanized countries (Graham [2], Oldewurtel et al., [3]). In Iraq, the building sector in Baghdad is responsible for 48% residential, 29% industrial, 13% offices, 6% commercial and 4% agricultural of energy consumption (Alsammarae, [4]). Most of the energy consumption in Iraq is for cooling and heating that require a great amount of energy loads as compared to lighting and other uses. Hasan [5] indicated that 69% of the annual energy use in houses in Baghdad consumes for cooling by 42% and 26% goes for heating.

The thermal insulations are materials or composite of materials which used mainly to afford resistance to heat flow. Insulations are heterogeneous materials with low thermal conductivity, and they include air pocket. The purpose of using air is due to low thermal conductivities and availability of it.

Mohamed selmi and Ismail A. Tag (1996) [6], deliberated the thermo-stone performance characteristic when it is used as a building material. He made a comparison with hollow bricks. Annual cooling load was estimated by using carrier advanced local program. Many of combination of house roof and walls have been used, estimating the annual electrical energy for the air-conditioning. The results showed that thermo-stone consuming 25%-30% electrical energy less than hollow bricks. So, the thermo-stone block will consume 28%-34% annual cost of electrical compared with hollow brick.

Atiff A. H (2010) [7], studied the environmental effect reduction on internal space temperature by external walls covering the object, which reduced the heat transferred quantities from or to internal building space by covering its external walls with many materials, therefore, the researcher built the (1x1x2) m room sample at 3rd floor for building in Baghdad city (L = 33.2 N°), and (1x2)m wall has East orientation , while the other surfaces were insulated by 200 mm styropor sheets, and using Air Conditioner 0. 5 Ton of refrigeration to afford the standard thermal comfort was used. The researcher found that, the metal sheet painted with thermal plastic paint with 10 mm thermal insulation used as a cover layer for ordinary wall saved 57% of electrical energy consumption in Air-Conditioner.

2. OBJECTIVES OF THE RESEARCH

Saving the energy is done for the Iraqi buildings by using standard thermal insulation and new thermal insulation.
3. THEORITICAL EQUATIONS
The of heat conduction rate is directly proportional to the thermal conductivity, the temperature difference and the area of the wall, on the other hand its inversely proportional to the thickness of the wall.

\[Q_{\text{cond,wall}} = kA \frac{T_1 - T_2}{l} \] \hspace{1cm} (3.1)

\[R_{\text{wall}} = \frac{L}{kA} \text{ (°C/W)} \] \hspace{1cm} (3.2)

Convection Resistance: Is the surface thermal resistance against heat convection.

\[Q_{\text{conv}} = hA_s(T_s - T_\infty) \] \hspace{1cm} (3.3)

\[R_{\text{conv}} = \frac{1}{hA_s} \text{ °C/w} \] \hspace{1cm} (3.4)

Radiation Resistance: Is the surface thermal resistance against heat radiation.

\[\dot{Q} = \dot{Q}_{\text{conv}} + \dot{Q}_{\text{rad}} \]

Schematic for convection and radiation resistances at a surface
4. EXPERIMENTAL SET UP

Experimental apparatus deals with room models, installations of insulations and measurements device

4.1. Room Models

4.1.1. Brick Model

Two brick model (fig. 1&2) where constructed of (1*1*1 m) dimensions, one of them insulated with three type of insulation : polyurethane, polystyrene and NC, and the second model is kept without using insulation in order to compare it with the first model.

![Figure 1](image)

Figure (1) show the brick model

4.2.2 Thermo-Stone Room

Thermo-stone model walls consist of a thermo-stone block of dimension (60*20*20 cm) length, width and thickness respectively have been used with cement mortar as a binding agent. With considering the roof and the ground are constructed as mentioned above. The thermo-stone in the local market available with dimension (0.6×0.2×0.2m), and its cost is 9$/m². The thermo-stone model has been used; The experiment done by comparing it with the brick model without insulation, as shown in photo (2) below:

![Figure 2](image)
4.2.3 Sandwich Panel Room

Its constructed from 5 cm thick sandwich panel, the four wall of (1*1 m length) fixed by using cubic iron frame shape, the panel plate jointed by using screws bolt on the frame. And all gaps are filled with polyurethane foam spray to avoid air leakage to the room. The sandwich panel in the local market is available in thickness 50 or 100 mm, with dimension (1x12m), and its cost is 16 $/m². The sandwich panel model of 50 mm thickness, The experiment done by comparing it with the brick model without insulation, as shown in photo (3) below.

Figure (3) show the sandwich panel & Brick model

Figure (4) below shows the brick model and externally insulated styropor model in the third experiments.
4.2. INSTALLATIONS OF INSULATIONS AND THERMOCOUPLE
Thermal insulation is installed on the external wall of the model by using 1m² insulation materials with 5cm thickness fixed to model by adhesive tape and supporting by rope. The thermocouples distribution was For each model used 11 LM wires have installed to measure the temperature distribution over the model where 8 LM wires are installed in the two side of the walls(each side has 4 LM wires) of the model besides one LM wire in the center as well as two LM in both sides of the roof of the model. As insulation is attached to the model more 4 LM installed in outer surface.

4.3. MEASUREMENT DEVICE
Two devices are used in this study for measuring the parameters where Data logger device type lapjack U3 is used for measuring the temperature of the model. And an extension is used to increase the number of measuring point, while Solar power meter device type TES-1333/1333R is used for measuring the solar power during each day of experiment by put it on horizontal surface, then read the value directly on the models, the measuring unit w/m² is adjusting in this study.

5. RESULTS AND DISCUSSIONS
Figure (5) shows the temperature variation of outside air temperature comparing with zone air temperature for sandwich model & for brick model, the temperature difference between \(T_a - T_i \) increase for starting from morning to maximum value at 2 p.m. the value for brick model was 11 °C, while for sandwich panel at the same time the difference reach to 15.5 °C, that means the insulated wall is better than commercial brick wall.

Figure (6) illustrates the temperature variation of outside air temperature comparing with zone air temperature for thermo-stone model & for brick model, the temperature difference between \(T_a - T_i \) increase for starting from morning to
Saving energy by Using Insulation

maximum value at 2 p.m. the value for brick model was 9 °C, while for thermo-stone at the same time the difference reach to 10 °C, that means the insulated wall is better than commercial brick wall.

Figure (7) represents the temperature variation of outside air temperature comparing with inside air temperature for outside cork model & for brick model, the temperature difference between \(T_a - T_i \) increase for starting from morning to maximum value at 2 p.m. the value for brick model was 10 °C, while for outside cork at the same time the difference reach to 13 °C, that means the insulated wall is better than commercial brick wall.

Figure (8) represents the rate of heat gain in brick model and Thermo-stone model, The rate of heat gain in brick model increased rapidly from morning time to peak value with range (2-17 watt/m\(^2\)), then decrease in afternoon duration to (2 watt/m\(^2\)), while in insulated model the heat gain varied smoothly with rang (3-11 watt/m\(^2\)). That the maximum value of the heat gain in the brick model is (17 watt/m\(^2\)) at 1 p.m., while the maximum value of the heat gain in the thermo-stone model is (11.36 watt/m\(^2\)) at 2 p.m., the saving energy percent is 33.17%.

Figure (9) illustrates that the maximum value of the heat gain in the brick model is (20 watt/m\(^2\)) at 1 p.m., while the maximum value of the heat gain in the sandwich panel model is (6 watt/m\(^2\)) at 2 p.m., the saving energy percent is 70%.

Figure (10) shows the rate of heat gain in brick model and outside cork insulation model, The rate of heat gain in brick model increased rapidly from morning time to peak value with range (2-18 watt/m\(^2\)), then decrease in afternoon duration to (1 watt/m\(^2\)), while in insulated model the heat gain varied smoothly with rang (1-8 watt/m\(^2\)). The maximum value of the heat gain in the brick model is (18 watt/m\(^2\)) at 1 p.m., while the maximum value of the heat gain in the outside insulation cork model is (8 watt/m\(^2\)) at 2 p.m., the saving energy percent is 54.28%.

Figure (11) show the annual distribution of the heat gain in Wh/m\(^2\) (by using Ecotect program), for sandwich panel and Brick model, from figure (5-30) it can be noticed that the average value of the heat gain during the experimental day (5 June) is 460 Wh/m\(^2\), compared with a figure (14) at the same day the average value is 160 Wh/m\(^2\).

Figure (12) show the annual distribution of the heat gain in Wh/m\(^2\), for thermo-stone model, from figure (5-30) it can be noticed that the average value of the heat gain during the experimental day (3 June) is 440 Wh/m\(^2\), compared with figure (13) at the same day the average value is 290 Wh/m\(^2\).

Figure (13) show the annual distribution of the heat gain in Wh/m\(^2\), for outside styropor and Brick model, from figure (5-30) it can be noticed that the average value of the heat gain during the experimental day (6 June) is 430 Wh/m\(^2\), compared with figure (15) at the same day the average value is 220 Wh/m\(^2\).
Figure (5) thermal behavior of brick and sandwich panel model wall

Figure (6) thermal behavior of brick and thermo stone model wall

Figure (7) thermal behavior of brick and brick insulated outside by cork model wall.
Saving energy by Using Insulation

Figure (8) Heat Flux Flow into Internal Surfaces of Thermo stone model.

Figure (9) Heat Flux Flow into Internal Surfaces of sandwich panel model.

Figure (10) Heat Flux Flow into Internal Surfaces of brick model insulated outside with cork.
Figure (11) the heat gain distribution on brick model insulated with sandwich panel.

Figure (12) the heat gain distribution on brick model insulated with thermo-stone.
Figure (13) the heat gain distribution on brick model insulated outside with styropor & brick model without insulation.

6. CONCLUSIONS
The following comments could be concluded:

- The insulated of south and west walls are more effective than that of northern and eastern walls.
- The best constructed walls to save energy were sandwich panel wall, then thermo-stone as compared to brick walls.
- The saving energy for experimentally tested insulation can be arranged from maximum value of saving as follow: 70% sandwich panel, thermo-stone model 33% and Outside styropor 54.28%.
- The higher initial cost of the constructed wall was brick wall, then sandwich panel wall and the cheaper one was thermo-stone wall.

ACKNOWLEDGMENTS
I would like to express my deep thanks and respect to all members of the (College Of Engineering / Mechanical Engineering Department at the University Of Wasit) for their cooperation.

REFERENCES

Dr. Hassan K. Abdullah and Sajad M. Aboud

