IMPLEMENTATION OF AREA AND SPEED EFFICIENT TPFT BASED CHANNELIZATION FOR SDR APPLICATION

P. Sri Lekha
PG Scholar (M. Tech.-VLSID), Department of ECE,
Shri Vishnu Engineering College for Women, Vishnupur - 534202, India

Dr. K. Pushpa
Professor, Department of ECE,
Shri Vishnu Engineering College for Women, Vishnupur - 534202, India

ABSTRACT

Channelization is the task of channel selection in a communications receiver. Usually it comprises down-conversion of the signal to base-band and channel filtering. To be able to influence the characteristics of channelization by means of software it is advantageous to realize as much as possible of the channelization functionality with digital signal processing. In base-stations several channels have to be received in parallel. An obvious approach to meet this task is to have a separate channelizer for each channel, which can be achieved through Tunable Pipelined Frequency Transform (TPFT) based channelization technique. It consists of TPFT based Filter banks and Interleavers, which in turn a TPFT Filter bank consists of two Processing elements(PE’s). This Processing elements consists of three blocks namely in commutator, Transposed Half-Band Filters and Out commutator. Transposed Half-Band Filters consists of adders which are the important part of the digital signal processing applications and also widely used in digital integrated circuits. In this paper, an attempt was made to reduce area and delay by using various adders to the existing system. Implementation of Area and Speed Efficient TPFT Based Channelization using Ripple Carry Adder (RCA), Carry Look-Ahead Adder (CLA) and Parallel Asynchronous Self-Timed Adder (PASTA) was synthesised and simulated using Xilinx ISE 14.5 tool for vertex family device and simulation results as well as synthesis report are presented in this work.

Key words: Coarse Channelization, Interleaver, Processing Element (PE), Software Defined Radio (SDR), Tunable Pipeline Frequency Transform (TPFT), Ripple Carry Adder (RCA), Carry Look-Ahead Adder (CLA) and Parallel Asynchronous Self-Timed Adder (PASTA).
1. INTRODUCTION

The wireless industry has been experiencing an exponential growth with the emergence of new radio access technologies and standards. All these technologies have been optimized to obtain a good trade-off between data rate, range and mobility to suit specific application needs. Lack of harmony in spectrum allocation globally has also resulted in this growth. However, with the increase in trade relationship between different continents, researchers had to look for a common multi-standard wireless communication platform which can support all these radio technologies and standards. This has resulted in the birth of the software defined radio (SDR) concept. SDR can be regarded as an ultimate communications solution which can ideally cover any cellular communication standard in a wide frequency spectrum with any modulation and bandwidth [1]. The basic idea of SDR is to replace the conventional analog signal processing in radio transceivers by digital signal processing by placing the analog to digital converter (ADC) in receivers (digital to analog converters (DAC) in transmitters) as close to the antenna as possible. Thus SDR should be able to support multiple communication standards by dynamically reconfiguring the same hardware platform. The channelizers in SDR receivers must be realized to meet the stringent specifications of low power consumption and high speed [2, 3]. In SDR receivers, channelization is usually done using digital filter banks and some of them are discussed below.

An obvious approach to receive several channels in parallel is performed using Per-Channel (PC) approach [4]. The PC approach is based on a parallel arrangement of many one-channel channelizers. Each one-channel channelizer performs the channelization process. It is a straightforward approach and hence relatively simple. But the main drawback is that, the number of branches of filtering-DDC-SRC is directly proportional to the number of received channels. Hence the PC approach is not efficient when the number of received channels is large. Furthermore, if the channels are of uniform bandwidth, a filter bank approach would be a cost-effective solution than the PC approach.

DFT filter bank (DFTFB) is a uniformly modulated filter bank, which has been developed as an efficient substitute for PC approach when the number of channels need to be extracted is more, and the channels are of uniform bandwidth (for example many single-standard communication channels need to be extracted). The main advantage of DFT filter bank is that, it can efficiently utilize the polyphase decomposition of filters [5]. However, DFTFBs have the limitation that they cannot extract channels with different bandwidths. This is because DFTFBs are modulated filter banks with equal bandwidth of all bandpass filters. Therefore, for multi-standard receivers, distinct DFTFBs are required for each standard. Hence the complexity of a DFTFB increases linearly with the number of received standards.

A Goertzel filter bank (GFB) based on modified Goertzel algorithm was proposed in [4] as a substitute to DFTFB. In GFB, the DFT is replaced by a modified Goertzel algorithm which performs the modulation of the prototype low-pass frequency response to any centre frequency which is not possible using DFT. This will eliminate the limitation of fixed channel stacking associated with DFTFBs. But the GFB is also a type of modulated filter bank; hence it cannot extract channels with different bandwidths, as in the case of DFTFB. Also, extraction of narrow-band channels using GFB requires a very narrow passband prototype filter, which would in turn result in higher order filter.
A channelizer based on a combination of polyphase filterbank and modified DFT (MDFT) modules have been proposed in [5]. The MDFT module performs real signal calculations instead of complex signal calculations and thus reduces computational complexity associated with the DFT operation. This is achieved by taking the real part of the DFT for the complex values. However, the channelizer in [6] is less flexible when compared to DFTFB. This is because the coefficients of the FIR filters in the MDFT module are dependent on the polyphase prototype filter.

A pipelined frequency transform (PFT) based on the PC approach has been proposed in [6]. The basic PFT architecture consists of a binary tree of DDCs and SRCs, which splits the input signal frequency into a low and high frequency sub bands, and then splits each half-band again until the last tree level extracts the desired channels. The main advantage of PFT approach over PC approach is that, the complexity of filtering can be reduced substantially taking advantage of half-band symmetry and reduced sampling rate at each output stage. In the PFT approach, the problem with power-of-two sub band stacking can be overcome by a tunable PFT (TPFT) architecture [7]. In the TPFT architecture, Interleavers are introduced between different stages of PFT, which will enable the usage of intermediate outputs from different stages along the binary tree. These Interleavers will help in fine tuning of channelization process and thus add more flexibility to the PFT architecture. Thus, in TPFT two levels of tuning are done, a coarse tuning at the PFT level and a fine tuning using another complex up/down converter assisted by a numerical controlled oscillator.

TPFT architecture consists of TPFT based Filter banks and Interleavers, which in turn a TPFT Filter bank consists of two Processing elements(PE’s). This Processing elements consists of three blocks namely In commutator, Transposed Half-Band Filters and Out commutator. Transposed Half-Band Filters consists of adders which are the important part of the digital signal processing applications and also widely used in digital integrated circuits. With the advances in technology, several researchers have contributed towards designing adders with either high speed, less power consumption, low area or the combination of them. In this paper, an attempt was made to reduce area and delay by using various adders to the existing system. In this paper, three different types of adders are used in Transposed Half-Band Filters of TPFT based channelization technique to reduce area and delay compared to the existing system. Three adders considered in the present paper are Ripple Carry Adder (RCA), Carry Look-Ahead Adder (CLA) and Parallel Asynchronous Self-Timed Adder (PASTA). Hence, this paper deals with implement area and speed Efficient TPFT Based Channelization for SDR Application.

The paper is organized as follows. In section 2, the details of TPFT based channelization is presented. Section 3 presents different types of adders used for the implementation of TPFT based channelization. The simulation results of different architectures are presented in section 4. In section 5, we have compared the results of existing methods with the proposed methods. Finally, section 6 provides conclusions.

2. TPFT BASED CHANNELIZATION

To overcome the limitation of PFT, a derived form, known as the “Tunable PFT” (TPFT) may be used. This allows independent tuning of the center frequency of all bins as well as independent filters for each bin. Because of the availability of different stage outputs, with different frequency resolutions, the end result is equivalent to having the flexibility of the DDC approach but with the efficiency of the PFT which is important for a larger number of channels.

This is an interesting development which makes use of the PFT cascade structure where intermediate outputs are readily available by. It is possible, by means of modifying the PFT architecture, not only to extract frequency bands of the desired size, but also to ensure these bands are centered at any given frequency. TPFT is used to implement the coarse channelization
block. The TPFT-based coarse channelization block consists of two parallel TPFT blocks and two parallel interleavers as shown in Figure 1. For all successive stages in the TPFT block, the output signal is decimated by two. The maximum decimation factor of the TPFT block is 512. Thus, each TPFT block is composed of nine cascaded processing elements (PEs), and is used to process one channel of complex input data. The TPFT-based channelization block is scalable in terms of the number of input signals, making it easily adapted for multiple applications.

![Figure 1](image1.png) Structure of the TPFT-based channelization block [8]

PE 1 as shown in Figure 2 consists of two data commutators and two transposed half-band filters with one shared branch filter. The general form of complex data is real and imaginary values the real and imaginary values are given to the In commutator and then data are first shifted with different frequencies. The In commutator consists of two registers and one switch. The signal S controls the behaviour of switch: swap or through. The internal diagrams of In Commutator, Transposed Half-Band filter and Out Commutator are as shown in Figures 3, 4 and 5 respectively.

![Figure 2](image2.png) Structure of the PE1

![Figure 3](image3.png) Structure of the In Commutator used in PE1
The In commutator consists of two multiplexers and one switch S. The operation of the In commutator mainly depends on the signal S that controls the behavior of switch. The input to the In Commutator is complex value the real value is given to both the multiplexers. Whereas the imaginary value is first given to the delay element after certain clock period the imaginary value is given to both the multiplexers. The output of the first multiplexers is delayed by some period and then output is obtained. The final outputs of the In Commutator are Up and Down values.

Figure 4 Structure of the Transposed Half-Band filter used in PE1

The inputs to the Transposed Half-Band filter are the outputs of the In commutator are Up and Down. The Half-Band filter have two important characteristics they are (1) The Pass- Band and Stop-Band must be same (2) The Pass- Band and Stop Band edge frequencies are equi distinct from the Half-Band frequency pie by two. Half-Band filters are very handy for doing efficient low pass filtering needed for sample rate conversion by half as nearly as half the coefficients are zero and need not be implemented at all. Half-Band filters in PE1 are implemented with two phase structures because of decimation by two. Thus, the two branches of Half-Band filters are time multiplexed by the real and imaginary parts of the input data. The final outputs of the Transposed Half-Band filters are Band1, Band3, Band2 and Band4.

Figure 5 Structure of the Out Commutator used in PE1
The Out commutator consists of two sets of In Commutator. The operation of the Out commutator is as same as the In commutator and the inputs to the Out commutator are Band1, Band3, Band2 and Band4. Which are the outputs of the Transposed Half Band filters. Finally, the filtered data pf band 1,2,3 and 4 shuffled by Out commutator are exported in the complex format. The data shuffling process of Out Commutator is similar to that of In commutator. The final output of the Out commutator are real and imaginary values.

3. ARCHITECTURE OF ADDERS

The design and features of three different types of adders such as Ripple Carry Adder (RCA), Carry Look-Ahead Adder (CLA) and Parallel Asynchronous Self-Timed Adder (PASTA) are mentioned below. The each adder is named based on the propagation of carry between the stages of the architecture.

3.1. Ripple Carry Adder (RCA)

Full adder is a basic adder in the Ripple Carry Adder (RCA) and it works on basic addition principle [9]. Two bits are added by using one full adder along with carry bit. In this carry of the one full adder is given to the next full adder and so on. Among the entire adders ripple carry adder is slowest but it occupies less area. Connecting the N full adders generates N bit ripple carry adder. The delay of the ripple carry adder depends upon the number of bits, if the number of bits increases the delay of the adder also increases. Critical path is used for the calculating the latency of the ripple carry adder. The simulation result of RCA is as shown in Figure 6.

3.2. Carry Look-Ahead Adder

Carry Look-Ahead Adder is designed to overcome the latency introduced by the rippling effect of the carry bits. The propagation delay occurred in the parallel adders can be eliminated by carry look ahead adder [10]. This adder is based on the principle of looking at the lower order bits of the augends and addend if a higher order carry is generated. This adder reduces the carry delay by reducing the number of gates through which a carry signal must propagate. Carry look ahead depends on two things: Calculating for each digit position, whether that position is going to propagate a carry if one comes in from the right and combining these calculated values to be able to deduce quickly whether, for each group of digits, that group is going to propagate a carry that comes in from the right. The net effect is that the carries start by propagating slowly through each 4-bit group, just as in a ripple-carry system, but then moves 4 times faster, leaping from one look ahead carry unit to the next. Finally, within each group that receives a carry, the carry propagates slowly within the digits in that group. This adder consists of three stages: a propagate block/ generate block, a sum generator and carry generator. The simulation result of CLA is as shown in Figure 7.
3.3. Parallel Asynchronous Self-Timed Adder (PASTA)

The design of PASTA is regular and uses half-adders (HAs) along with multiplexers requiring minimal interconnections [11]. Thus, it is suitable for VLSI implementation. The design works in a parallel manner for independent carry chain blocks. The adder first accepts two input operands to perform half additions for each bit. Subsequently, it iterates using earlier generated carry and sums to perform half-additions repeatedly until all carry bits are consumed and settled at zero level. The general architecture of the adder is shown in Figure 8. The selection input for two-input multiplexers corresponds to the Req handshake signal and will be a single 0 to 1 transition denoted by SEL. It will initially select the actual operands during SEL = 0 and will switch to feedback/carry paths for subsequent iterations using SEL = 1. The feedback path from the HAs enables the multiple iterations to continue until the completion when all carry signals will assume zero values.

In Figure 9, two state diagrams are drawn for the initial phase and the iterative phase of the proposed architecture. Each state is represented by \((C_{i+1} S_i)\) pair where \(C_{i+1}\), \(S_i\) represent carry out and sum values, respectively, from the \(i\)th bit adder block. During the initial phase, the circuit merely works as a combinational HA operating in fundamental mode. It is apparent that due to the use of HAs instead of FAs, state \((11)\) cannot appear. During the iterative phase (SEL = 1), the feedback path through multiplexer block is activated. The carry transitions \((C_i)\) are allowed as many times as needed to complete the recursion. From the definition of fundamental mode circuits, the present design cannot be considered as a fundamental mode circuit as the input–outputs will go through several transitions before producing the final output. It is not a Muller circuit working outside the fundamental mode either as internally, several transitions will take place, as shown in the state diagram. This is analogous to cyclic sequential circuits where gate delays are utilized to separate individual states. 4 bit addition using PASTA is illustrated using Figure 10 by taking the following values as \(A=1101\) (13); \(B=1010\) (10); \(Cin=0001\) (1); \(A+B+Cin=11000\) (24). The simulation result of PASTA is as shown in Figure 11.
Implementation of Area and Speed Efficient TPFT Based Channelization For SDR Application

Figure 8 General block diagram of PASTA

Figure 9 State diagram for PASTA. (a) Initial Phase (b) Iterative Phase

Figure 10 Example illustrating 4 bit addition using PASTA
4. RESULTS AND DISCUSSION

The TPFT based channelization structure shown in Figure 1 had been designed by making use of Verilog HDL. The synthesis and simulation results were produced making use of Xilinx ISE 14.5 for the Vertex6 family device.

The output of the in commutator depends on the operation of the switch. The output of the in commutator are Up and Down. When the switch is 1 then the Up value will be real (Re) part and the Down value will be imaginary (Im) part and vice-versa when the switch is 0. The output wave form of the in commutator is shown in Figure 12.

The input to the transposed half band filter are obtained by the output of the In commutator. Half band filters in the PE1 are implemented with a two-phase structure because they are decimated by two the values which are exported from the In commutator the two branches of a half band filter are time-multiplexed by the real and imaginary parts of the input data. The outputs of the transposed half band filters are Band 1, Band 2, Band 3 and Band 4. By reversing the sign of the Up-output data of band 1, we can get the Up-output data of band 3. In the same way, we can get the Up-output data of band 4 from the Up-output data of band 2. By replacing the final adder with subtractor, we can get the filtered data of band 3 from the output results of two branch filters of band 1. In the same way, the filtered data of band 4 can be obtained from the output results of two branch filters of band 2. Finally, Band 1, Band 2, Band 3 and Band 4 are the outputs of the transposed half band filter. The output wave forms of the transposed half band filter are shown in Figure 13.
Finally, the filtered data of bands 1, 2, 3, and 4 shuffled by Out commutator are exported in the complex format. The data shuffling process of Out commutator is similar to that of In commutator. The output of the Out commutator are Re and Im in Up and Down. The Up-output sequence of Out commutator are the real parts of bands 1 and 3, and the imaginary parts of bands 1 and 3. Similarly, the Down output sequence of Out commutator is the data of band 2 followed by the data of band 4. The output wave forms of Out commutator are shown in Figure 14.

Figure 14 Simulation result of out commutator

Processing element (PE1) is the combination of above components In commutator, transposed half band filter and out commutator. PE 2 consists of one frequency shift block and two decimation filters and the operation is almost similar to that of PE1. The inputs to the Processing elements are complex data and the output form ids fed to the interleaver which is of complex form. The output wave forms of PE1 are shown in Figure 15.

Figure 15 Simulation result of PE1

TPFT block is composed of nine cascaded processing elements (PEs), and is used to process one channel of complex input data. The operation of the TPFT block is based on the operation of Processing elements. The output wave forms of TPFT block are shown in Figure 16.
The output results of all the PEs are available because of the cascaded architecture. Hence, it is possible to extract frequency bands with different bandwidths and centre frequency. Interleaver consists of 32 dual-port RAMs, 1 multiplexer, and 1 control unit. The output results of PEs 2, 3, ..., and 9 are written into dual-port RAM Sets 1, 2, ..., and 8, respectively. According to the control word Rate, Source, and Freq of each channel, the control unit generates the corresponding read addresses for the 32 dual port RAMs and performs a selection among them. The inputs to the Interleaver are rate, source, and frequency and the outputs of the Interleaver are complex data. The output wave forms of Interlever are shown in Figure 17.

The TPFT-based coarse channelization block is implemented by using two parallel TPFT blocks and two parallel Interleavers. The spectrum of the input signal is separated into multiple bands. The output wave forms of Coarse Channelization by considering the general adder (GA) in transposed half band filter are shown in Figure 18.
Similar analysis is carried out for implementation of TPFT based Coarse Channelization by considering different adders like RCA, CLA and PASTA and the results are tabulated in Table 1.

Table 5.1 Comparison of results in terms of area utilization and time delay for various Adders

<table>
<thead>
<tr>
<th>S.No</th>
<th>Parameter</th>
<th>Existing method (GA)</th>
<th>Proposed method 1 (RCA)</th>
<th>Proposed method 2 (CLA)</th>
<th>Proposed method 3 (PASTA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Number of slice registers</td>
<td>20471</td>
<td>10318</td>
<td>10319</td>
<td>7090</td>
</tr>
<tr>
<td>2</td>
<td>Number of slice LUT’s</td>
<td>16218</td>
<td>12759</td>
<td>13592</td>
<td>12262</td>
</tr>
<tr>
<td>3</td>
<td>Time delay (ns)</td>
<td>33.76</td>
<td>9.718</td>
<td>5.822</td>
<td>5.962</td>
</tr>
</tbody>
</table>

5. COMPARISON OF EXISTING METHOD AND PROPOSED METHODS

In this section, we present the comparison of simulation results for different architectures using different adders (RCA, CLA and PASTA) which are used for the implementation of TPFT based channelization. The results obtained for various adders in terms of area utilization and time delay are tabulated in Table 5.1. The bar chart shown in Figure 19 illustrates the number of slice register and LUT’s utilized by various adders used in the implementation of TPFT based channelization. It can be seen that the number of slice registers reduced by 50% for RCA and CLA based architecture, whereas by 65% are PASTA based architecture when compared with the existing architecture. Similarly, the number of slice LUT’s reduced by 21% for RCA, 16% for CLA and 25% for PASTA was observed when compared with the existing method. Overall, we can see a clear decrease in area utilization for PASTA based architecture which is used in the implementation of TPFT based channelization. The bar chart shown in Figure 20 compares the time delay for different architectures based on different adders like RCA, CLA and PASTA with the existing architecture. From the graph, it is evident that the time delay was decreased by 71.21%, 82.75% and 82.34% for architectures based on RCA, CLA and PASTA adders respectively when compared to existing one.
6. CONCLUSIONS

In this paper, we have implemented the TPFT based channelization technique by considering different types of adders like RCA, CLA and PASTA. A comparative study among the existing and proposed methods was also done using Xilinx tool for vertex family. The number of slice

Figure 19 Area utilization of various architectures using different adders

Figure 20 Time delay of various architectures using different adders
Implementation of Area and Speed Efficient TPFT Based Channelization For SDR Application

registers and LUT’s in the existing system is 20471 and 16218, while that of proposed PASTA architecture is 7090 and 12262 is observed with minimum area utilization. Similarly, the delay of the existing method is 33.76 ns while the minimum delay of 5.962 ns was observed for proposed method 3. This proves the efficiency of PASTA based proposed architecture both in terms of area and delay. In implementation of TPFT based channelization technique, adders which are used in transposed half-band filters can be replaced by PASTA adder to achieve low area and minimum delay. The proposed architecture seems to be remarkably suitable for channelization where area and delay need to be optimized.

REFERENCES

