MAJORIZATION PROBLEMS FOR SUBCLASSES OF ANALYTIC FUNCTIONS INVOLVING Q-CALCULUS OPERATOR

K.Thilagavathi, K.Vijaya and K.Uma
Department of Mathematics, School of Advanced Sciences,
VIT University, Vellore - 632014, India

ABSTRACT
In the present paper, we investigate majorization problems for certain classes of analytic functions involving Ruscheweyh q-differential operator.

AMS Subject Classification: [2010]Primary 30C45; Secondary 30C50.

Key words: Analytic functions, starlike functions, subordination, majorization, q-calculus operator.

1. INTRODUCTION
Let \(A \) denote the class of functions of the form

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n
\]

which are analytic and univalent in the the open unit disk

\(U = \{ z : z \in \mathbb{C} \text{ and } |z| < 1 \}. \)

We now give some basic definitions and related details of \(q \)-calculus which are relevant for our study.

The \(q \)-shifted factorial is defined for \(\alpha, q \in \mathbb{C} \) as a product of \(n \) factors by

\[
(\alpha; q)_n = \begin{cases} 1 & ; n = 0 \\ (1-\alpha)(1-\alpha q)\cdots(1-\alpha q^{n-1}) & ; n \in \mathbb{N}, \end{cases}
\]

and in terms of the basic analogue of the gamma function

http://www.iaeme.com/IJCIET/index.asp 2197 editor@iaeme.com
\((q^n; q)_n = \frac{\Gamma_q(\alpha+n)(1-q)^n}{\Gamma_q(\alpha)} \quad (n > 0), \)

(3)

where the \(q \)-gamma function is defined by ([3], p. 16, eqn. 1.10.1))

\[\Gamma_q(x) = \frac{(q; q)_x(1-q)^{1-x}}{(q^x; q)_x} \quad (0 < q < 1). \]

(4)

If \(|q| < 1\), the equation (2) remains meaningful for \(n = \infty \) as a convergent infinite product:

\[(\alpha_q)_\infty = \prod_{j=0}^{\infty} (1 - \alpha q^j). \]

In view of the relation

\[\lim_{q \to 1^-} \frac{(q^n; q)_n}{(1-q)^n} = (\alpha)_n, \]

(5)

we observe that the \(q \)-shifted factorial (2) reduces to the familiar Pochhammer symbol \((\alpha)_n\), where

\[(\alpha)_n = \alpha(\alpha+1) \cdots (\alpha+n-1). \]

The \(q \)-derivative and \(q \)-integral of a function on a subset of \(C \) are respectively given by (see [3], pp. 19–22)

\[\partial_q f(z) = \frac{f(z) - f(qz)}{z(1-q)} \quad (z \neq 0, q \neq 0) \]

(6)

and

\[\int_{0}^{z} f(t) d(t; q) = z(1-q) \sum_{k=0}^{\infty} q^k f(zq^k). \]

(7)

Therefore, the \(q \)-derivative of \(f(z) = z^n \), where \(n \) is a positive integer, is given by

\[\partial_q z^n = \frac{z^n - (nz) - (1-q)^n}{z(1-q)} = z^{n-1} \quad (z \neq 0, q \neq 0). \]

(8)

For any non-negative integer \(n \), the \(q \)-integer number \(n, [n] \) is defined by:

\[[n]_q = \frac{1 - q^n}{1 - q} = 1 + q + q^2 + \ldots + q^{n-1}, [0] = 0. \]

(9)

The \(q \)-number shifted factorial is defined by \([0]! = 1\) and \([n]! = [1][2] \ldots [n] \). Here \(q \) to be a fixed number between 0 and 1.

As \(q \to 1 \) we have

\[[n]_q = \frac{1 - q^n}{1 - q} = 1 + q + q^2 + \ldots + q^{n-1} = 1. \]
Here we used the following relations

\[[m+n]_q = [m]_q + q^n [n]_q \]

\[[m-n]_q = q^{-n} [m]_q - q^n [n]_q, [0]_q = 0, [1]_q = 1 \]

Recently, many authors have introduced new classes of analytic functions using \(q \)-calculus operators and related topics, we refer the reader to [1, 6, 11] and the references cited therein.

Using the definition of Ruscheweyh differential operator [12] for \(f \in A \), Kanas and Raducanu[4] defined and discussed the Ruscheweyh \(q \)-differential as

\[R_q^\lambda f(z) = f(z) * F_{\lambda,q+1}(z) = z + \sum_{n=2}^{\infty} \frac{[\lambda+1]_{n-1}}{[n-1]!} a_n z^n. \] (10)

Making use of (10) and properties of Hadamard product, Kanas and Raducanu [4] obtain the following equality

\[z \partial_q (R_q^\lambda f(z)) = (1+q^{-\lambda}) R_q^{\lambda+1} f(z) - \frac{[\lambda]}{q^\lambda} R_q^\lambda f(z). \] (11)

It is easily verified from (10) if \(q \to 1^- \) the equality (11) implies

\[z(R_q^\lambda f(z)) = (1+\lambda) R_q^{\lambda+1} f(z) - \lambda R_q^\lambda f(z). \] (12)

Recently Selvakumaran et.al.[13] proved the following result analogues to Nehari [10] result.

Lemma 1 [13] If \(f(z) \) is analytic and bounded in \(U \), then

\[|D_q f(z)| = \frac{1-|f(z)|^2}{1-z f(z)}, (z \in U). \]

For two functions \(f(z) \) and \(g(z) \) are analytic functions in \(U \), we say that \(f \) is subordinate to \(g \) written \(f(z) \prec g(z) \) if there exists a schwarz function \(\omega(z) \) which is analytic in \(U \) with \(\omega(0) = 0 \) and \(|\omega(z)| < 1 \) for all \(z \in U \), such that \(f(z) = g(\omega(z)) \), \(z \in U \).

Let \(f \) and \(g \) be two analytic functions in \(U \). We say that \(f(z) \) is majorized by \(g(z) \) in \(U \) and write \(f(z) \ll g(z) \) if there exists a function \(\phi(z) \), analytic in \(U \), such that \(|\phi(z)| < 1 \) and \(f(z) = \phi(z) g(z) \), \(z \in U \).

It is noted that the notation of majorization is closely related to the concept of quasi-subordination between analytic functions.

Majorization problem for the class of analytic functions had been investigated by MacGregor [5] and Altintas et al. [2] further by Murugusundaramoorthy et al., [7, 8] for certain classes of analytic functions involving linear operators. Motivated by the results given in Kanas and Raducanu [4] and Nehari [10] in this paper, we define the following new class of starlike functions of complex order involving Ruscheweyh \(q \)-differential operator and obtain majorisation result for \(f \in S_q^\lambda(b) \).

For functions \(f \in A \) we let \(S_q^\lambda(b) \), the class of starlike functions of complex order if
\[\Re \left(1 + \frac{1}{b} \left[z \partial_q (R_q f(z)) \right] \right) > 0 \]

\[(z \in \mathbb{U}, b \in \mathbb{C} \setminus \{0\}, 0 < q < 1)\]

It can be seen that, by specializing the parameters, the class \(S^q(b) \), reduces to many known subclasses of analytic functions. For instance, if \(q \to 1 \) then

(i) \(S^0_1(b) = S(b) \), the class of starlike functions of complex order \(b \) (see [9])

(ii) \(S^0_1(1 - \alpha) = S(\alpha), (0 \leq \alpha < 1) \) the class of starlike functions of complex order \(\alpha \).

2. MAIN RESULT

Theorem 2 Let the function \(f(z) \) be in the class \(A \) and suppose that \(g(z) \in S^q_1(b) \). If \(R_q^q f(z) \) is majorized by \(R_q^q g(z) \). If \(R_q^q g(z) \) in \(\mathbb{U} \), then

\[|R_q^{q+1} f(z)| \leq |R_q^{q+1} g(z)|, \, (|z| \leq r) \]

where

\[r_i = r_i(\lambda : b) = \frac{K - \sqrt{K^2 - 4(q^4 + [\lambda])(1(2b-1)q^4 - [\lambda])}}{2((2b-1)q^4 - [\lambda])} \]

where

\[K = 3(q^2 + [\lambda]) + 1(2b-1)q^4 - [\lambda] \]

\((b \in \mathbb{C} \setminus 0, 0 < q < 1, \lambda \geq 0)\)

Proof. Let

\[h(z) = 1 + \frac{1}{b} \left[z \partial_q (R_q^q g(z)) \right] \]

Since \(g(z) \in S^q_1(b) \), we have \(\Re h(z) > 0 (z \in \mathbb{U}) \) and

\[h(z) = \frac{1 + \omega(z)}{1 - \omega(z)}, (\omega \in A) \]

where

\[\omega(z) = c_1 z + c_2 z^2 + \ldots \]

and \(A \) denotes the well known class of bounded analytic functions in \(\mathbb{U} \) and satisfies the conditions

\[\omega(0) = 0, \text{ and } |\omega(z)| \leq |z|, (z \in \mathbb{U}) \]
It follows from (15) and (16) that
\[
\frac{z \partial_q (R_q^f g(z))}{R_q^f g(z)} = \frac{1+(2b-1)\omega(z)}{1-\omega(z)}
\]
(18)

In view of the identity (15), we have the following inequality from (18) by making some simple calculations
\[
|R_q^f g(z)| \leq \frac{(1+|z|)(q^z + |\lambda|)}{q^z + |\lambda| + ((2b-1)q^z - |\lambda|)|z|} |R_q^{z+1} g(z)|
\]
(19)

Since $R_q^f f(z)$ is majorized by $R_q^f g(z)$ in U, there exists an analytic function $\phi(z)$, such that
\[
R_q^f f(z) = \phi(z)(R_q^f g(z))
\]
(20)

Applying q differentiation with respect to z and then multiplying by z we get
\[
z \partial_q (R_q^f f(z)) = z \partial_q (\phi(z))(R_q^f g(z)) + z \phi(z) \partial_q (R_q^f g(z))
\]
(21)

Noting that the $\phi(z)$ is bounded in U and using lemma (1), we obtain
\[
|\partial_q (\phi(z))| \leq \frac{1-|\phi(z)|^2}{1-|z|^2}
\]
(22)

and using (19), (22) in (21) we have
\[
|R_q^{z+1} f(z)| \leq \left(\phi(z) + \frac{1-|\phi(z)|^2}{1-|z|^2} \right) \times
\]
\[
\frac{(q^z + |\lambda|)|z|}{(q^z + |\lambda| + ((2b-1)q^z - |\lambda|)|z|} |R_q^{z+1} g(z)|
\]
(23)

\[
= \frac{-q^z + |\lambda|}r \rho r^2 + (1-r)((q^z + |\lambda|) + ((2b-1)q^z - |\lambda|)|z|)\rho + (q^z + |\lambda|)r |R_q^{z+1} g(z)|
\]
(24)

\[
|z| = r \quad \text{and} \quad |\phi(z)| \leq \rho \quad (0 \leq \rho \leq 1)
\]

\[
|R_q^{z+1} f(z)| \leq \frac{\psi(\rho)}{(1-r)((q^z + |\lambda|) + ((2b-1)q^z - |\lambda|)\rho + (q^z + |\lambda|)r) |R_q^{z+1} g(z)|
\]
(25)

where
\[
\psi(\rho) = -(q^z + |\lambda|)\rho r^2 + (1-r)((q^z + |\lambda|) + ((2b-1)q^z - |\lambda|)\rho + (q^z + |\lambda|)r
\]

Taking its maximum value at $\rho = 1$ with $r = r_q(\lambda : b)$ given by (14). Furthermore, if $0 \leq \sigma \leq r = r_q(\lambda : b)$, the function $\phi(\rho)$ defined by
\[
\phi(\rho) = -(q^z + |\lambda|)\sigma r^2 + (1-\sigma)((q^z + |\lambda|) + ((2b-1)q^z - |\lambda|)\sigma)\rho + (q^z + |\lambda|)\sigma
\]
is an increasing function on $(0 \leq \rho \leq 1)$ so that
\[\varphi(\rho) \leq \varphi(1) = -(q^2 + [\lambda])\sigma + (1-\sigma)((q^2 + [\lambda]) + ((2b-1)q^2 - [\lambda])\sigma) + (q^2 + [\lambda])\sigma \]
(26)

\((0 \leq \rho \leq 1); 0 \leq \sigma \leq r_i = r_q(\lambda : b)\) then setting \(\rho = 1 \) in (24), we conclude that holds true for \(|z| \leq r_q(\lambda : b)\). This completes the proof of Theorem (2).

REFERENCES

