NUMERICAL STUDY TO DIFFUSION OF CHEMICALLY REACTIVE SPECIES OVER MHD EXPONENTIALLY STRETCHING SURFACE OF A CASSON FLUID

*Hymavathi Talla and Pavana Kumari
Department of Mathematics, Adikavi Nannaya University, Rajamundry, India

W. Sridhar
Department of Mathematics, K L E F Deemed to be University, Vaddeswaram, Guntur, India

*Corresponding Author

ABSTRACT
The present study of the paper deals with diffusion of chemically reactive species of a non-Newtonian MHD Casson fluid towards an exponentially stretching surface using keller box method. Casson fluid model is used to characterize the non-Newtonian fluid behaviour. The flow fields and mass transfer are affected significantly by the physical parameters. The effect of increasing values of the Casson parameter and Magnetic Parameter is to suppress the velocity field. But the concentration increases with increasing Casson parameter.

Keywords: Casson fluid, exponentially stretching sheet, Magnetic Parameter, chemical reaction

http://www.iaeme.com/IJMET/issues.asp?JType=IJMET&VType=9&IType=10

1. INTRODUCTION
Boundary layer flow over a stretching surface is often encountered in many engineering disciplines. The study of boundary layer flow over a linearly stretching surface in most of the available literature. The flow due to nonlinearly stretching sheet by considering exponential order stretching velocity is available in literature.

In the present investigation, non-Newtonian fluid model known as Casson fluid model is considered. For a Casson fluid, if a shear stress less than the yield stress is applied to the fluid, it behaves like a solid whereas if a shear stress greater than yield stress is applied, it starts to move. Some examples of Casson fluid are human blood, concentrated fruit juices, Jelly,
tomato sauce, honey, soup etc. Casson fluid can be defined as a shear thinning liquid which is assumed to have an infinite viscosity at zero rate of shear, a yield stress below which no flow occurs and a zero viscosity at an infinite rate of shear (Dash et al. [6]). Eldabe and Elmohands [7] have studied the Casson fluid for the flow between two rotating cylinders and Boyd et al. [8] investigated the Casson fluid flow for the steady and oscillatory blood flow. Recently, Swati mukhopadhyay et al [6] analysed the diffusion of chemically reactive species of a Casson fluid flow over an exponentially stretching surface.

The purpose of this present work is to study the flow and mass transfer analysis in boundary layer flow of a Casson fluid over an exponentially stretching sheet in presence of a first order constructive/destructive chemical reaction numerically. Using similarity transformations, a third order ordinary differential equation corresponding to the momentum equation and a second order differential equation corresponding to the concentration equation are derived. Numerical calculations up to desired level of accuracy were carried out for different values of dimensionless parameters of the problem under consideration for the purpose of illustrating the results graphically. The analysis of the results shows that the flow field is influenced appreciably by the mass transfer parameter in presence of constructive, non-reactive and destructive chemical reactions.

2. EQUATIONS OF MOTION

Let us consider the flow of an incompressible viscous fluid past a flat sheet coinciding with the plane \(y = 0 \). The fluid flow is confined to \(y > 0 \). Two equal and opposite forces are applied along the \(x \)-axis so that the wall is stretched keeping the origin fixed (see Fig.1). The rheological equation of state for an isotropic and incompressible flow of a Casson fluid is

\[
\tau_{ij} = \begin{cases}
2(\mu_B + P_y/\sqrt{2\pi})e_{ij}, & \pi > \pi_c \\
2(\mu_B + P_y/\sqrt{2\pi_c})e_{ij}, & \pi < \pi_c
\end{cases}
\]

Here \(\pi = e_{ij}e_{ij} \) and \(e_{ij} \) is the \((i,j)\)-th component of the deformation rate, \(\pi \) is the product of the component of deformation rate with itself, \(\pi_c \) is a critical value of this product based on the non-Newtonian model, \(\mu_B \) is plastic dynamic viscosity of the non-Newtonian fluid, and \(P_y \) is the yield stress of the fluid. Let \(c_w \) be the concentration at the sheet and concentration far away from the sheet is \(c_0 \). Also the reaction of species is the first order homogeneous chemical reaction with rate constant \(k \).

![Figure 1](image-url)

The continuity, momentum (Mustafa et al. [19]) and concentration equations governing such type of flow are written as

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
\]

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
\]

(1)
Numerical Study to Diffusion of chemically reactive species over MHD exponentially stretching surface of a Casson fluid

\[u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \nu \left(1 + \frac{1}{\beta} \right) \frac{\partial^2 u}{\partial y^2} - \frac{B_0^2}{\rho} u \]

(2)

\[u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = D \frac{\partial^2 C}{\partial y^2} - k(C - C_\infty) \]

(3)

where \(u \) and \(v \) are the components of velocity respectively in the \(x \) and \(y \) directions, \(\nu \) is the kinematic viscosity, \(\rho \) is the fluid density (assumed constant), \(\beta = \mu_B \sqrt{2\pi C/2P_y} \) is parameter of the Casson fluid, \(D \) is the diffusion coefficient of the diffusing species in the fluid, \(k = k_0 e^\frac{x}{L} \) is the exponential reaction rate; \(k>0 \) stands for destructive reaction whereas \(k<0 \) stands for constructive reaction, \(k_0 \) is a constant.

A. Boundary Conditions

The appropriate boundary conditions for the problem are given by

at \(y = 0, u = U, v = 0, C \to C_w \)

as \(y \to \infty, v \to 0, C \to C_\infty \)

Here \(U = U_0 e^{\frac{x}{L}} \) is the stretching velocity (Magyari and Keller [2]), \(C_w = C_\infty + C_0 e^{\frac{x}{L}} \) is the concentration at the sheet, \(U_0, C_0 \) are the reference velocity, concentration respectively.

B. Method of solution

Introducing the similarity variables as

\[\eta = \frac{U_0}{2vL} e^{\frac{x}{L}} y \]

\[u = U_0 e^{\frac{x}{L}} f' (\eta) \]

\[v = - \frac{vU_0}{2L} e^{\frac{x}{L}} \{ f(\eta) + \eta f'(\eta) \} \]

(4)

and upon substitution of (6) in equations (2) and (3) the governing equations reduce to

\[\left(1 + \frac{1}{\beta} \right) f''' + ff'' - 2f'f'' - Mf' = 0 \]

(5)

\[\phi'' - Sc(f\phi' - f'\phi - 2\gamma \phi) = 0 \]

(6)

and the boundary conditions take the following form

at \(\eta \to 0, f = 0, \phi = 1, f' = 1 \) as \(\eta \to \infty, f' \to 0, \phi \to 0 \)

where the prime denotes differentiation with respect to \(\eta \).

\(Sc = \frac{\nu}{D} \) is the Schmidt number, \(\gamma = \frac{k_0 L}{U_0} \) is the reaction rate parameter. Here \(\gamma > 0 \) represents the destructive reaction, \(\gamma = 0 \) corresponds to no reaction, and \(\gamma < 0 \) stands for the generative reaction.
2.1. Numerical Procedure

Equation subject to boundary conditions is solved numerically using an implicit-finite difference scheme known as keller box method, as described by cebeci and Bradshaw[6]. The steps followed are

1. Reduce (1) to a first order equation
2. Write the difference equations using central differences
3. Linearize the resulting algebraic equation by Newton’s method and write in matrix vector form
4. Use the block tridiagonal elimination technique to solve the linear system.

Introduce $f' = p$, \hspace{1cm} (7)
$p' = q$, \hspace{1cm} (8)
$g' = n$ \hspace{1cm} (9)
eqn(5) reduces to

$$(1 + \frac{1}{\beta})q' + fq - 2p^2 - Mp = 0$$ \hspace{1cm} (10)

$\phi'' + Sc(f\phi' - f'\phi - 2y\phi) = 0$ \hspace{1cm} (12)

consider the segment η_{j-1}, η_j with $\eta_{j-1/2}$ as the mid point

$\eta_0 = 0, \eta_j = \eta_j + h_j, \eta_\infty = \eta_\infty$ \hspace{1cm} (13)

where h_j is the $\Delta \eta$ spaces and $j=1,2,\ldots,J$ is a sequence number that indicates the coordinate locations.

$$\frac{f_j - f_{j-1}}{h_j} = \frac{p_j + p_{j-1}}{2} = p_{j-1/2}$$ \hspace{1cm} (14)

$$\frac{p_j - p_{j-1}}{h_j} = \frac{q_j + q_{j-1}}{2} = q_{j-1/2}$$ \hspace{1cm} (15)

$$\frac{g_j - g_{j-1}}{h_j} = \frac{n_j + n_{j-1}}{2} = n_{j-1/2}$$ \hspace{1cm} (16)

$$q_j - q_{j-1} + \frac{\beta h_j}{\beta + 1} \left(\frac{f_j + f_{j-1}}{2} \right) \left(\frac{q_j + q_{j-1}}{2} \right) -$$

$$\frac{\beta h_j}{2 (\beta + 1)} \left(\frac{p_j + p_{j-1}}{2} \right)^2 - \frac{M \beta h_j}{(\beta + 1)} \left(\frac{p_j + p_{j-1}}{2} \right) = 0$$ \hspace{1cm} (17)
Numerical Study to Diffusion of chemically reactive species over MHD exponentially stretching surface of a Casson fluid

\[t_j - t_{j-1} + \frac{Sch_j}{4} \left(\frac{f_j + f_{j-1}}{2} \right) \left(\frac{t_j + t_{j-1}}{2} \right) - \]

\[\frac{Sch_j}{4} \left(\frac{p_j + p_{j-1}}{2} \right) \left(\frac{g_j + g_{j-1}}{2} \right) - \]

\[\frac{Sc \gamma h_j}{2} \left(\frac{g_j + g_{j-1}}{2} \right) = 0 \]

Equations (14) to (18) are imposed for \(j=1,2,3, \ldots, J \) and the transformed boundary layer thickness \(\eta_j \) taken to the sufficiently large so that it is beyond the edge of the boundary layer.

The bc’s are

\[f_0 = 0, \quad p_J = 0 \]

\[p_0 = 1, \quad g_0 = 1 \]

\[g_J = 0 \] (19)

2.2. Newton’s method

Linearizing the non linear system of equations (14) to (19)

Introduce

\[f_j^{(k+1)} = f_j^{(k)} + \delta f_j^{(k)} \]

\[p_j^{(k+1)} = p_j^{(k)} + \delta p_j^{(k)} \]

\[q_j^{(k+1)} = q_j^{(k)} + \delta q_j^{(k)} \]

\[g_j^{(k+1)} = g_j^{(k)} + \delta g_j^{(k)} \] (20)

Substitute in equations (14) to (19)

\[\delta f_j - \delta f_{j-1} - \frac{h_j}{2} \left(\delta p_j + \delta p_{j-1} \right) = (r_1) \]

\[\delta p_j - \delta p_{j-1} - \frac{h_j}{2} \left(\delta q_j + \delta q_{j-1} \right) = (r_2) \]

\[\delta g_j - \delta g_{j-1} - \frac{h_j}{2} \left(\delta n_j + \delta n_{j-1} \right) = (r_3) \]

\[(a_1)_{j} \delta q_j + (a_2)_{j} \delta q_{j-1} + (a_3)_{j} \delta f_j + (a_4)_{j} \delta f_{j-1} + \]

\[(a_5)_{j} \delta p_j + \delta p_{j-1} = (r_4) \]

\[(b_1)_{j} \delta n_j + (b_2)_{j} \delta n_{j-1} + (b_3)_{j} \delta f_j + (b_4)_{j} \delta f_{j-1} + \]

\[(b_5)_{j} \delta p_j + (b_6)_{j} \delta p_{j-1} + (b_7)_{j} \delta q_j + (b_8)_{j} \delta q_{j-1} = (r_5) \] (25)
Where

\[(a_1)_j = 1 + \frac{\beta h_j}{4(\beta + 1)} (f_j + f_{j-1})\]

\[(a_2)_j = (a_1)_j - 2.0\]

\[(a_3)_j = \frac{\beta h_j}{4(\beta + 1)} (q_j + q_{j-1})\]

\[(a_4)_j = (a_3)_j\]

\[(a_5)_j = \frac{\beta h_j}{(\beta + 1)} (p_j + p_{j-1}) - 2M\]

\[(a_6)_j = (a_5)_j\]

\[(b_1)_j = 1 + \frac{Sch_j}{4} (f_j + f_{j-1})\]

\[(b_2)_j = (b_1)_j - 2.0\]

\[(b_3)_j = \frac{Sch_j}{4} (n_j + n_{j-1})\]

\[(b_4)_j = (b_3)_j\]

\[(b_5)_j = -\frac{Sch_j}{4} (g_j + g_{j-1})\]

\[(b_6)_j = (b_5)_j\]

\[(b_7)_j = -\frac{Sch_j}{4} (p_j + p_{j-1}) - Sc.\gamma.h_j\]

\[(b_8)_j = (b_7)_j\]

And

\[(r_1)_j = f_{j-1} - f_j + \frac{h_j}{2} (p_j + p_{j-1})\]

\[(r_2)_j = p_{j-1} - p_j + \frac{h_j}{2} (q_j + q_{j-1})\]

\[(r_3)_j = g_{j-1} - g_j + \frac{h_j}{2} (n_j + n_{j-1})\]
Numerical Study to Diffusion of chemically reactive species over MHD exponentially stretching surface of a Casson fluid

\[
\begin{align*}
(r_j) &= q_{i-1} - q_j - \frac{\beta_1}{4(\beta + 1)}(f_j + f_{j-1})(q_j + q_{j-1}) + \frac{\beta_1}{2(\beta + 1)}(p_j + p_{j-1}) + \frac{M\beta_1}{2(\beta + 1)}(p_j + p_{j-1}) \\
(r_j) &= n_{j-1} - n_j - \frac{Sch_j}{4}(f_j + f_{j-1})(n_j + n_{j-1}) + \frac{Sch_j}{4}(p_j + p_{j-1})(g_j + g_{j-1}) + Sc\gamma h_j(g_j + g_{j-1})
\end{align*}
\]

Taking \(j=1,2,3,\ldots\)

The system of equations becomes

\[
[A_1][\delta_1] + [C_1][\delta_2] = [r_1] \tag{28}
\]

\[
[B_2][\delta_1] + [A_2][\delta_2] + [C_2][\delta_3] = [r_2] \tag{29}
\]

\[
B_{j-1}[\delta_1] + [A_{j-1}][\delta_2] + [C_{j-1}][\delta_3] = [r_{j-1}]
\]

\[
[B_j][\delta_{j-1}] + [A_j][\delta_j] = [r_j]
\]

Where

\[
A_1 = \begin{bmatrix}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
(a_2)_1 & (a_3)_1 & (a_4)_1 & 0 & 0
\end{bmatrix} \quad A_j = \begin{bmatrix}
d & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
(a_6)_j & 0 & (a_7)_j & (a_8)_j & 0 \\
(b_6)_j & (b_7)_j & (b_8)_j & 0 & (b_9)_j
\end{bmatrix}
\]

\[
B_j = \begin{bmatrix}
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & (a_5)_j & (a_6)_j & 0 \\
0 & 0 & (b_5)_j & (b_6)_j & 0
\end{bmatrix} \quad C_j = \begin{bmatrix}
d & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
(a_5)_j & 0 & 0 & 0 & 0 \\
(b_5)_j & (b_6)_j & 0 & 0 & 0
\end{bmatrix}
\]

2.3. The Block Elimination Method

The linearized differential equations of the system has a block diagonal structure. This can be written in matrix form as

\[
\begin{bmatrix}
[A_1] & [C_1] \\
[B_2] & [A_2] & [C_2] \\
[B_{j-1}] & [A_{j-1}] & [C_{j-1}]
\end{bmatrix}
= \begin{bmatrix}
[\delta_1] \\
[\delta_2] \\
[\delta_{j-1}]
\end{bmatrix}
= \begin{bmatrix}
[y_1] \\
[y_2] \\
[y_{j-1}]
\end{bmatrix}
\]

(30)

This is of the form \(A \delta = r\)

To solve the above system

Write \([A] = [L] [U]\)
Where
\[
L = \begin{bmatrix}
[\alpha_1] \\
[\beta_2] [\alpha_2] \\
\end{bmatrix}
\quad \text{and} \quad
U = \begin{bmatrix}
[I] [\Gamma_1] \\
[I_2] [\Gamma_2] \\
\end{bmatrix}
\]

Where \([I]\) is the identity matrix

\([\alpha_1, \Gamma_1]\) are determined by the following equations

\([\alpha_1] = [A_1]\)
\([A_1][I_1] = [C_1]\)
\([\alpha_j] = [A_j]-[B_j][\Gamma_j] \quad j=2,3, \ldots, J\)
\([\alpha_j][\Gamma_j] = [C_j] \quad j=2,3, \ldots, J-1\)

Substituting (33) in (32)

\[LU\delta = r\]

Let \(U \delta = W\)

then \(LW = r\)

\[
\begin{bmatrix}
[w_1] \\
[w_2] \\
[w_{j-1}] \\
[w_J] \\
\end{bmatrix}
\]

where \(W=\)

Now \([\alpha_1] [w_1] = [r_1]\)
\([\alpha_j] [w_j] = [r_j]-[B_j][W_j] \quad \text{for} \quad 2 \leq j \leq J\)

Once the elements of \(W\) are found, substitute in \(L\delta=W\) and solve for \(\delta\)

\([\delta_j] = [W_j]\)
\([\delta_j] = [W_j]-[\Gamma_j][\delta_{j+1}] \quad , 1 \leq j \leq J-1\)

These calculations are repeated until some convergence criterion is satisfied and we stop the calculations when \(|\delta_{g_{\text{end}}}| \leq \varepsilon\), where \(\varepsilon\) is very small prescribed value taken to be \(\varepsilon = 0.00001\).

3. RESULTS AND DISCUSSIONS

In order to analyze the results, numerical computations have been carried out using the method described in the previous section for various values of Casson parameter (\(\beta\)), Schmidt number (\(\text{Sc}\)) and reaction rate parameter (\(\gamma\))
Numerical Study to Diffusion of chemically reactive species over MHD exponentially stretching surface of a Casson fluid

Figure 1a Velocity profiles for various values of casson parameter

Figure 1a shows that the effect of Casson parameter on velocity profiles. Considering $\gamma=0.0, M=0.5, Sc=0.5$ and Casson parameter β at 0.5, 1.0 and 2.0, it is observed that velocity is found to decrease with the increase in Casson parameter β.

Figure 1b Velocity profiles for various values of Magnetic Parameter M

Figure 1b shows that the effect of casson parameter on velocity profiles. Considering $\gamma=0.0, \beta=1.0, Sc=0.5$ at $M=0.1, 0.5$ and 1.0, it is observed that velocity is found to decrease with the increase in magnetic parameter M.

http://www.iaeme.com/IJMET/index.asp 478 editor@iaeme.com
Figure 1 c Concentration profiles for various values of reaction rate parameter γ

Figure 2a shows that the effect of reaction rate parameter on concentration profiles. Considering $\beta=0.5, M=0.5, Sc=1.0$ reaction rate parameter γ at 0.1, 0.5 and 1.0, it is observed that concentration is found to decrease with the increase in reaction rate parameter (γ)

Figure 2 b Variation of concentration for several values of Casson parameter

Figure 2b shows that the effect of Casson parameter on concentration profiles. Considering $\gamma=0.0, Sc=1.0, M=0.5$ and Casson parameter β at 0.5, 1.0 and 2.0, it is observed that concentration is found to be increasing with the increase in Casson parameter β
Numerical Study to Diffusion of chemically reactive species over MHD exponentially stretching surface of a Casson fluid

Figure 2c Variation of concentration with η for several values of Casson parameter in presence of destructive chemical reaction

Figure 2c shows that the effect of Casson number on concentration profiles. Considering γ=0.1, M=0.5, Sc=1.0 and Casson parameter at 0.5, 1.0 and 2.0, it is observed that concentration is found to be increasing with the increase in Casson Parameter in presence of destructive chemical reaction at γ=0.1.

Figure 2d Variation of concentration with η for several values of Schmidt number in presence of chemical reaction

Figure 2d shows that the effect of Schmidt number on concentration profiles. Considering β=2.0, γ=1.0, M=0.5 and Sc at 0.7, 1.0 and 2.0, it is observed that Concentration is found to be decreasing with the increase in Schmidt number Sc.
4. CONCLUSIONS
In this present investigation, it is observed that

1. Velocity is found to decrease with the increasing Casson parameter β, Magnetic parameter M.
2. Concentration is found to be increasing with the increase in Casson parameter β.
3. Concentration is found to be increasing with the increase in Casson Parameter in presence of destructive chemical reaction and in absence of chemical reaction.
4. Concentration is found to be decreasing with the increase in Sc.

REFERENCES

