DESIGN AND ANALYSIS OF FLYBACK MICRO INVERTER FOR INTEGRATION OF FUEL CELLS WITH SINGLE PHASE GRID

Elangovan D, Arunkumar G, Indragandhi V, Venkatesh S
Associate Professor, School of Electrical Engineering, VIT University, Vellore, India

Ramani Kannan
Senior Lecturer, Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, Malaysia

ABSTRACT

Renewable energy is going to play a major role in the future energy scenario. All the existing topologies use number of intermediate stages before conversion of DC input to the AC output to the grid side. For this type of conversion, efficiency is very low and number of power components are also very high. In this paper, a low cost high efficiency simple DC-AC flyback inverter is proposed. The proposed converter consists of a simple flyback converter followed by a simple full bridge inverter with passive snubber in the primary. The modes of operation of the converter along with the design of the converter with the snubber is discussed. Experimental results from simulations are presented as well.

Key words: Single Phase Grid, Micro Inverter, Fuel Cells

1. INTRODUCTION

Energy crisis in recent times and rising environmental concern are making renewable energy sources more and more important. In the year of 2014, the use of renewable energy was 2610.6 million tons of oil equivalent (Mtoe), responsible for 30% of world energy consumption [1]. The energy produced from maximum available renewable energy or those under research work (like Fuel Cell) is in DC form. The generation system can be locally grid connected or by using long range transmission. If the system is locally connected we need to step up or step down the voltage for a particular voltage level [2-6]. When appliances are connected to the local grid too we need different voltage levels for different applications, thereby necessitating the use of a DC-DC converter.
Design and Analysis of Flyback Micro Inverter for Integration of Fuel Cells with Single Phase Grid

Our existing single phase grid is compatible with alternating current and the appliances are also made in that fashion. For this type of system we cannot directly integrate the DC generation system or renewable generation system. In order to integrate renewable energy systems with the existing single phase grid, energy conversion is needed from DC to AC. The first step is to make the DC to a particular voltage level using a DC-DC converter and then DC-AC conversion is done using an inverter. The feasibility of the inverter depends upon the DC-DC converter efficiency and the capability to withstand high voltage surge and inrush current. Considering all available topologies [7-9] and existing converter models, it is seen that flyback converter is the most suitable model for the PV micro inverter. With its simplicity and low cost it is the best choice of DC-DC converter for integration with inverters for low power level applications. The operation of conventional flyback inverter [10-13] is very simple and the conduction mode of the primary flyback converter is mainly DCM. The transformer acts like an inductor and provides an added advantage of isolating the high voltage output side from the low voltage input side. The primary side of the transformer charges when the primary side switch is on and it discharges when the primary switch it off and gives supply to the inverter.

In the existing system the main problem is with the efficiency of the overall system and huge stress on the main primary side switch. So to overcome that problem a new micro inverter topology has been proposed and detailed operation, design criterion and feasibility has been discussed in the later sections.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_s</td>
<td>switching frequency</td>
</tr>
<tr>
<td>V_in</td>
<td>input voltage</td>
</tr>
<tr>
<td>DCM</td>
<td>discontinuous conduction mode</td>
</tr>
<tr>
<td>V_g,p</td>
<td>grid voltage</td>
</tr>
<tr>
<td>PV</td>
<td>Photo voltaic</td>
</tr>
<tr>
<td>r.m.s.</td>
<td>root mean square</td>
</tr>
<tr>
<td>THD</td>
<td>total harmonic distortion</td>
</tr>
<tr>
<td>P_o</td>
<td>output power</td>
</tr>
<tr>
<td>I_SF</td>
<td>input current</td>
</tr>
</tbody>
</table>

2. PROPOSED FLYBACK INVERTER SCHEME

Generally a flyback micro inverter is connected with low DC voltage (i.e. around 45 Volt) at the input side. Due to low voltage at the input, the losses at the time of turning on are less compared to high voltage switching as energy stored in the output capacitance of the switch is less. Though this flyback micro inverter is a low power converter, current flowing through the primary side (input) of the transformer may be quite high. This case happens when the flyback micro inverter is designed to operate in such a fashion that the transformer is demagnetized fully before ending each switching cycle. If the switch is turned off with this high current, there will be high turn off losses.

The primary side switch turn off losses can be reduced by implementing a snubber circuit that cuts down the voltage rise rate across the switch at the time of turning off and hence reduces the voltage-current product of the switch. This has been incorporated in the proposed converter.

In Fig. 1 the proposed flyback micro inverter model has been shown. The primary side of the transformer of the proposed micro inverter is just like a simple DC-DC flyback converter.
It has only one switch S_1. For reduction of switching losses and increasing the converter efficiency, a snubber circuit has been introduced in the primary side of the converter. The snubber circuit consists of capacitor C_{clamp} and diode D_1. The secondary side of the converter is a simple full bridge inverter with four switches. At the output of the inverter, a L-C filter has been used to produce a sinusoidal wave which is fed to the grid. Due to the filter circuit, there is negligible amount of THD in the output of the inverter.

The basic operating principle that should be followed by the micro inverter for the production of accurate alternating waveform in the grid side is that the flyback transformer should be fully discharged before starting of the next switching cycle. The switches in the secondary side S_{01}, S_{02}, S_{03}, S_{04} must operate properly to get an appropriate AC waveform which must be synchronized with the grid. S_{01} and S_{02} is turned to transfer energy to grid and to produce output with positive polarity. S_{03} and S_{04} are turned on to transfer energy to grid side and to generate output with negative polarity. The output filter circuit smoothens out the inverter output and produces a sinusoidal wave which can be fed to the grid.

![Figure 1 Schematic diagram of the proposed converter](image)

3. MODES OF OPERATION

During a particular switching cycle, the flyback micro inverter operates under several modes of operation. The equivalent circuit diagram of different modes of operation with the flow of current direction have been shown and discussed below.

3.1. Mode A: t_0 – t_1

The converter operation switching cycle begins with the turning on of the primary switch S_1 at $t=t_0$. After turning on of primary switch the source voltage comes across the primary inductance of the transformer and the transformer magnetizing inductances starts magnetizing. The conduction path is illustrated in red in Fig. 2.

3.2. Mode B: t_1–t_2

This mode of operation begins with the turning off of the primary switch S_1 at $t=t_1$. Consequence of this is that the current flow through the switch S_1 is stopped and it will flow through the magnetizing inductance and output capacitor of the switch S_1, C_{clamp} and through Diode D_1, C_{clamp} and the magnetizing inductance after voltage across C_{clamp} reaches to $V_{\text{input}} + N*V_{\text{output}} + V_{\text{clamp}}$ (here V_{input} is the input source voltage, V_{output} is the instantaneous output voltage and N is the turns ratio of the transformer). At the end of the mode, voltage across C_{clamp} reaches its maximum value. The conduction path is illustrated in red in Fig. 3.
At the starting of this mode of operation at t=t2, the transformer starts demagnetizing and secondary diode starts conducting. Simultaneously switches S₀₁, S₀₂, S₀₃ and S₀₄ operate according to the polarity of the grid voltage. When voltage polarity is positive switches S₀₁ and S₀₂ operate and current flows through both of the switch and to the grid. When voltage polarity is negative switches S₀₃ and S₀₄ operate. The conduction path is illustrated in red in Fig. 4.

3.3. Mode D: t₃-t₄

When the current goes to zero in the secondary side, there is no voltage reflection across the primary magnetizing inductance of the transformer. As a consequence, the magnetizing inductances begin to resonate with the output capacitor of the primary switch. This mode ends when the primary switch S₁ is turned on for the next cycle. The conduction path is illustrated in red in Fig. 5.
4. CONVERTER DESIGN

The design procedure of the converter has been split into two parts. The first section consists of the design of the main converter alone and the second section consists of the snubber design. Basic specifications of the proposed converter are mentioned in Table 1.

Table 1 Basic specifications of the proposed converter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>35 V - 45 V</td>
</tr>
<tr>
<td>Flyback converter frequency</td>
<td>100 kHz</td>
</tr>
<tr>
<td>Inverter frequency</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Output voltage</td>
<td>230 V r.m.s.</td>
</tr>
<tr>
<td>Output power</td>
<td>100 W</td>
</tr>
</tbody>
</table>

4.1. Main converter design

For getting a perfect sinusoidal wave in the grid side of the converter, it is mandatory to operate the converter in DCM. The component that ensures DCM mode of operation is the transformer primary magnetizing inductance (Lm). Depending on whether the primary inductance is high or low, the behaviour of the current changes. If the primary inductance value is too low, it will result in high peak in primary current and will give an extra stress on the primary side switch as forced switch off has to be done with huge current flowing through it. This will result in high turn off loss in the switch. If the inductance value is very high, it
will in turn result in continuous conduction of the converter and that will make the output voltage have undesirable characteristics.

Selection of N and Lm is interlinked. These parameters are very much interdependent. When the converter has been designed to operate in the DCM mode of operation it is very important to give sufficient time for complete discharging of the peak magnetizing current of the primary inductance after the primary switch S1 has been switched off. In this operation, the worst case is when the converter is operating in maximum duty ratio ‘d_p’ and the primary current reaches to the maximum value in the grid cycle. The specifications of all the components used in the converter design are given in Table 2.

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switches (MOSFET)</td>
<td>200 V, 18 A</td>
</tr>
<tr>
<td>Magnetizing Inductance (L_m)</td>
<td>28 µH</td>
</tr>
<tr>
<td>Primary snubber capacitance</td>
<td>0.12 µF</td>
</tr>
<tr>
<td>Primary snubber resistance</td>
<td>10 Ω</td>
</tr>
<tr>
<td>Output filter inductor</td>
<td>100 mH</td>
</tr>
<tr>
<td>Output filter capacitor</td>
<td>80 µF</td>
</tr>
</tbody>
</table>

The relation between input voltage, turns ratio and peak duty cycle is derived below and expressed in equation (1).

\[t_{off} \leq T_S - t_{on} \]

\[t_{on} = d_p \times T_S = d_p \times \left(\frac{1}{f_s} \right) \]

\[d_p \leq \frac{1}{Nv_{in}g_p} + 1 \]

(1)

Turns ratio is given by equation (2).

\[\frac{v_{in}}{v_{g,p}} (\frac{1}{d_p} - 1)^{-1} \leq N \]

(2)

Magnetising inductance is given by equation (3).

\[L_m = \frac{1}{2} \left(\frac{v_{in}}{v_{g,p}} \right)^2 \frac{d_p^2 v_{g,p \text{ rms}}^2}{f_s p_o} \]

(3)

4.2. Snubber Design

The passive regenerative snubber circuit consists of clamping capacitor (C_{clamp}), Diode ‘D’ and Resistor ‘R’ in parallel. If the snubber circuit is not there, the accumulated energy in the leakage inductance as S1 is turned off will be dissipated through the output capacitor of the switch. It will increase the voltage spike across the switch and may damage it. The clamp capacitor can absorb the energy and reduce the voltage spike of the switch. Using energy balance equation the clamp capacitor is designed as given in equation (4).

\[C_{clamp} = \frac{L_1 p^2}{(dV_{clamp})^2} \]

(4)
5. SIMULATION RESULTS
For the simulation of the proposed converter, PSIM ver. 9.1.1 software is used. The proposed converter is simulated in PSIM and the results are obtained from SIMVIEW. Fig. 6 shows the input D.C voltage waveform which is 35.6 V. Fig. 7 shows the waveform of primary switch voltage which is 60 V in steady state. The secondary switch voltage waveform is shown in Fig. 8 and the grid side output voltage waveform which is 230 V r.m.s. is shown in Fig. 9. It can be seen that a pure sine wave output is obtained.

Figure 6 Input voltage to the converter

Figure 7 Primary switch voltage

Figure 8 Secondary switch voltage

Figure 9 Output voltage of the flyback micro inverter
6. CONCLUSIONS

There are three types of architecture available among inverters, each with their own merits and demerits. They are central inverter, string inverter and micro-inverter. The focus of the thesis is on micro-inverter. The main objective of the paper is to make a cost effective, efficient micro-inverter in comparison with the existing topologies. With the help of a clamping circuit, the stress of the primary switch has been reduced which has led to lesser switching losses. Therefore, overall efficiency of the system has been increased. The circuit is very simple, compact and economical. The overall system design and operation has been discussed. The proposed converter gives output voltage with only 0.42% T.H.D. which is as per IEEE-519 standard. The proposed converter is very much suitable for integrating renewable energy sources like fuel cells and solar PVs with the existing grid. In the future, when DC grids become the norm, the converter can be used without the inverter at the output side.

REFERENCES

