USING K-MEANS CLUSTER AND FUZZY C MEANS FOR DEFECT SEGMENTATION IN FRUITS

VaniAshok1, Dr. D.S. Vinod2

1(Computer Science & Engineering, Sri Jayachamarajendra College of Engineering, Mysore, Karnataka, India)
2(Information Science & Engineering, Sri Jayachamarajendra College of Engineering, Mysore, Karnataka, India)

ABSTRACT

Quality and safety are the key factors in modern food industries. The quality of fruits and vegetables is a common combination of characteristics, attributes and properties that have significance and make for acceptability. One of the most popular applications of computer vision is to inspect qualities of food products based on form, color and presence of defects. Appearance factors such as size or dimension, shape, surface texture, surface color, and external or surface defects define external quality and directly influence consumers in purchasing a product, and they can be evaluated by means of computer vision techniques. The proposed paper presents defect segmentation of fruits based on surface color features with unsupervised K-Means clustering and Fuzzy C-Means algorithms. As the first step, the digital color images of defective apples are pre-processed using Gaussian low-pass filter (GLPF) smoothing operator to remove noise. The images are then segmented with the purpose of separating the defects from the edible regions using proposed clustering algorithms. A comparison analysis is also performed among the two methods.

Keywords: Image segmentation, Clustering, Histogram, Filtering, K-means, Fuzzy C-Means (FCM)

1. INTRODUCTION

Quality and safety are the key factors in modern food industries. Increasing consciousness of quality, particularly in the food and health sector, strongly demands research activities regarding the production of defined quality, the preservation of quality during marketing, and thus also the possibilities of evaluating quality parameters and of integrating this into production processes. The pallet of possible damage to fruit and vegetables is extremely extensive and is often a criterion of
quality determination methods, for example, malformations, rust fungi, formation of cork, splits, bitter pit, insect damage, rots, scalds, temperature damage, and glassiness or other physiological diseases of the storage phase. In addition, there are various risks for injuries during harvest and transport [1]. With the increasing quality awareness among consumers, the expectation for improved quality in agricultural and food products has increased the need for enhanced quality monitoring. There is a need to develop various image analysis techniques to meet the demand of the growing population. Moreover there is growing demand for automation in food industries due to the fact that the traditional labor intensive manual inspection processes are inefficient, inaccurate and ineffective. The application of computer vision in agriculture has increased considerably in recent years due to the fact that it provides substantial amounts of information about the nature and attributes of the objects present in a scene.

The use of this technology has spread rapidly in inspecting agri-food commodities, including meat quality assessment, automated poultry carcass inspection, quality evaluation of fish, visualization of sugar distribution of melons, measuring ripening of tomatoes, defect detection of pickling cucumber, and classification of wheat kernels [2]. The computer vision is particularly used more in automatic inspection of fruits and vegetables, since it is more reliable and objective than human inspection [3].

Quality assessment of fruits and vegetables is done based on the analysis of external features like color, size, shape, texture and presence of damage. As consumers are mostly influenced to choose or reject a particular fruit by its color, it is the most important attribute for assessing the quality of fruits. The most widely used color spaces in computers and digital images are RGB, HSI and L*a*b*. In RGB the color of a pixel in image is expressed as three coordinates of primary colors red, green and blue in a color space. HSI is the color space which is closer to the human perception of color, like the hue, saturation and intensity. However, RGB and HSI are non-uniform color spaces and hence uniform color space like L*a*b* is used to implement the proposed algorithms.

The defect segmentation of fruits based on surface color feature can be considered as an instance of image segmentation where we are segmenting only the defective portion of the fruit. Image segmentation is the process of partitioning the image into several constituent components. It partitions the digital image into disjoint (non-overlapping) regions. Segmentation is an essential step in computer vision and automatic pattern recognition processes based on image analysis of foods as subsequent extracted data are highly dependent on the accuracy of this operation. Food image segmentation is still an unsolved problem because of its complex and under constrained attributes [4].

Image segmentation methods are generally based on one of two fundamental properties of the intensity values of image pixels: similarity, where the image is partitioned into regions that are similar according to a set of predefined criteria, and discontinuity, where the image is partitioned based on sharp changes in intensity values. Based on the discontinuity or similarity criteria, many segmentation methods have been introduced which can be broadly classified into six categories: (1) Histogram based method, (2) Edge Detection, (3) Neural Network based segmentation methods, (4) Physical Model based approach, (5) Region based methods (Region splitting, Region growing and merging), (6) Clustering (Fuzzy C-means clustering and K-Means clustering) [5]. The unsupervised clustering algorithms are particularly appropriate for the exploration of interrelationship among the data points to make an assessment of the structure where there is little a priori information available about the data [6].

2. RELATED WORKS

Physical appearances of food extremely vary causing difficulties for computer vision systems. Fruits, in particular, have numerous kinds of defects and highly varying skin color. Hence,
they pose even more problems for computer vision-based quality inspection systems. Paul Martinsen and Peter Schaare [7] have proposed a method for predicting chemical component distribution in kiwifruit using imaging spectroscopy techniques. The author used partial least-squares method for data modeling. J Blasco et al. [8] proposed the segmentation procedure, based on a Bayesian discriminant analysis, to allow fruits to be precisely distinguished from the background. The machine vision system thus developed detected the external defects of the apples with 86% accuracy. The feasibility of NIR spectroscopy in combination with powerful multivariate calibration techniques, such as Partial Least Squares regression (PLS), to measure quality attributes of fruit and vegetables has been demonstrated by B.M. Nicolai et al. [9]. J. Tan [10] suggested filtering, background removal, segmentation of fat from muscles, isolation of the LD muscle and segmentation of marbling from the LD muscle to assess the quality attributes of meat images. K. Vijayarekha [11] discusses the multivariate image analysis technique applied to the defect segmentation of apple fruit in multispectral range.

An intensive study on apple quality inspection is carried out by Unay [12]. The apple images were captured through color/monochrome camera in diffusely illuminated tunnel with two different light sources (fluorescent tubes and incandescent spots). To improve the image quality a noise removal operation was performed before applying the image segmentation operation to detect the defect type. The image intensity and texture based shape features were extracted from each segmented portion of the image. The performance of several classification methods (Linear Discriminant Classifier (LDC), k-Nearest Neighbors (k-NN), Fuzzy k-NN, Support Vector Machine (SVM), Decision Tree and Multi-layer Perceptrons (MLP) were studied for defect segmentation and detection. They identified bruise, flesh damage, frost damage, hail, hail with perforation, limb rub, scar tissue, rots, russet and scald defects.

Gabriel Leiva et al. [13] devised methodology to classify blueberries with fungal decay, shrivelling and mechanical damage using statistical pattern recognition techniques: extracting the most possible features, selecting the best ones, training the best classification algorithm. The feature extraction strategies used were Sequential Forward Selection (SFS), with objective functions: Fisher discriminant, K-Nearest Neighbour (KNN), Linear and Quadratic Discriminant Analysis (LDA and QDA); and other feature extractors without objective function used were: Forward orthogonal search algorithm by maximizing the overall dependency, Least Squares Ellipse Fitting (LSEF) and Rank key features by class separability criteria. With the selected features, decision lines, planes or hyper planes classifiers were implemented using LDA, QDA, minimal distance, Mahalanobis Distance (MD), KNN (with 4 to 30 nearest neighbours), Support Vector Machine (SVM) and different Neural Networks techniques (NN).

Apart from fruit quality assessment researchers are trying to investigate fruit characteristics that can be used for fruit grading process. V. Leemans et al. [14] have achieved fruit grading is six steps: image acquisition; ground colour classification; defect segmentation; calyx and stem recognition; defects characterization and finally the fruit classification into quality classes. They realized color grading using a simple neural network with no hidden layer, using the three luminances (red, green and blue) of the considered pixel as input. The calyx and stem ends, which appear on an image as defects, were detected using a correlation pattern recognition technique and defect segmentation was done using Gaussian model of the fruit color, measuring the Mahalanobis distance separating the mean color of the fruit and of each pixel.

Yousef Al Ohali [15] has designed computer mediated date fruit quality assessment and sorting system. He has used the color intensity distribution in the image as an estimate of flabbiness of date fruit. Back Propagation Neural Network (BPNN) is used to classify the dates into three groups, Grade-1: fruits having good shape, high flabbiness, Grade 2: fruits with distorted shape, low flabbiness and Grade 3: fruits having defects.
3. CLUSTERING ALGORITHMS

In this section, the basic sets of definitions are presented to provide the preliminaries of the clustering methods. First we define the K-means clustering method. The second part discusses about Fuzzy C-means (FCM) clustering.

3.1 K-Means Clustering Algorithms

K-means method is an unsupervised clustering method that classifies the input data objects into multiple classes on the basis of their inherent distance from each other [5]. Clustering algorithm assumes that a vector space is formed from the data features and tries to identify natural clustering in them. The objects are clustered around the centroids $\mu_i \forall i = 1 \ldots k$ which are computed by minimizing the following objective

$$V = \sum_{i=1}^{k} \sum_{x \in S_i} (x_j - \mu_i)^2$$

Where k is the number of clusters i.e. S_i, $i = 1, 2, \ldots, k$ and μ_i is the mean point or centroid of all the points $x_j \in S_i$.

The algorithm of an iterative version K-means clustering is as follows:

Step 1. Compute the distribution of the intensity values.

Step 2. Using k random intensities initialize the centroids.

Step 3. Cluster the image points based on the distance of their intensity values from the centroid intensity values.

$$c^{(i)} := \arg \min_j \|x^{(i)} - \mu_j\|^2$$

Step 4. Compute new centroid for each cluster.

$$\mu_i := \frac{\sum_{i=1}^{m} I(c_{(i)} = j)x^{(i)}}{\sum_{i=1}^{m} I(c_{(i)} = j)}$$

where k is the number of clusters, i iterates over all the intensity values, j iterates over all the centroids.

Step 5. Repeat Step 3 and Step 4 until the labels of the cluster do not change any more.

3.2 Fuzzy C-Means Clustering Algorithms

Fuzzy C-means (FCM) is a clustering technique which differs from hard K-means that employs hard partitioning [16]. The FCM employs fuzzy partitioning such that a data point can belong to all groups with different membership grades between 0 and 1. FCM is an iterative algorithm. The aim of FCM is to find cluster centers (centroids) that minimize a dissimilarity function. To accommodate the introduction of fuzzy partitioning, the membership matrix (U) is randomly initialized according to,

$$\sum_{i=1}^{c} u_{ij} = 1, \forall j = 1, \ldots, n$$

The dissimilarity function used in FCM is given by,

$$J(U, c_1, c_2, \ldots, c_c) = \sum_{i=1}^{c} J_i = \sum_{i=1}^{c} \sum_{j=1}^{n} u_{ij} m d_{ij}^2$$

U_{ij} is between 0 and 1;

C_{ij} is the centroid of cluster i;
d_{ij} is the Euclidean distance between i^{th} centroid(c_i) and j^{th} data point; $m \in [1, \infty]$ is a weighting exponent or fuzziness parameter.

To reach a minimum of dissimilarity function there are two conditions which are given in Equation (6) and Equation (7).

$$c_i = \frac{\sum_{j=1}^{n} u_{ij}^m x_j}{\sum_{j=1}^{n} u_{ij}^m}$$ \hspace{1cm} (6)

$$u_{ij} = \frac{1}{\sum_{k=1}^{c} \left(\frac{d_{ij}}{d_{kj}} \right)^{2(m-1)}}$$ \hspace{1cm} (7)

Precisely speaking, initially the u_{ij} and the centers of the clusters are assigned randomly and the u_{ij} is updated in each iteration. The iterative process stops when

$$\|U^{(S)} - U^{(S-1)}\| = \max |u_{ij}^{(S)} - u_{ij}^{(S-1)}| < \varepsilon$$ \hspace{1cm} (8)

The FCM that iteratively updates the cluster centers and the membership grades for each data point is as follows:

Step 1. Randomly initialize the membership matrix (U) that has constraints as given in Equation (4).

Step 2. Calculate centroids (c_i) by using Equation (6).

Step 3. Compute dissimilarity between centroids and data points using equation (5). Stop if its improvement over previous iteration is below a threshold.

Step 4. Compute a new U using Equation (7). If condition given in Equation (8) is False, go to Step 2.

FCM iteratively moves the cluster centers to the "right" location within a data set.

4. DEFECT SEGMENTATION

In this section, the implementation of K-means and Fuzzy C-means clustering algorithms for defect segmentation in apple fruits is presented.

4.1 Using K-Means Clustering

Step 1. Read the input image of defective fruit.

Step 2. In order to remove the image noise and reduce detail levels the Gaussian low-pass filter (GLPF) smoothing operator is applied.

Step 3. Transform the image from RGB to $L^*a^*b^*$ color space as all of the color information is present in the a^* and b^* layers only.

Step 4. Calculate the histograms of the image to decide the number of clusters.

Step 5. Classify colors using K-means clustering in a^*b^* space, with Euclidean distance to measure the distance between two colors.
Step 6. Label each pixel in the image from the results of K-means. Every pixel of the image will be labeled with its cluster index.

Step 7. Generate different images for each cluster.

4.2 Using Fuzzy C-Means

Step 1. Read the input image of defective fruit.

Step 2. In order to remove the image noise and reduce detail levels the Gaussian low-pass filter (GLPF) smoothing operator is applied.

Step 3. Calculate the histograms of the image to decide the number of clusters.

Step 4. Classify pixel intensities using FCM algorithm (initial value of \(m = 2 \) and \(\varepsilon = 0.01 \)) with number of clusters as determined in Step 3.

Step 5. Generate image by allocating different intensity levels for each subclass of the image.

5. EXPERIMENTAL RESULTS

To determine the performance of the clustering approaches, we have considered apples as a case study. The data set consists of various images of apples with defects such as apple scab, rot and blotch for the purpose of defect segmentation. Fig. 1 represents some of the images of defective apples from the data set.

![Sample Images from the Dataset](image)

Fig. 1: Sample Images from the Dataset

Fig. 2, Fig. 3 and Fig. 4 show defect segmentation results of sample apple fruits using K-means clustering.

![K-Means Defect Segmentation of an Apple with Scab](image)

Fig. 2: K-Means Defect Segmentation of an Apple with Scab
(a) Filtered Image (b) First Cluster (c) Second Cluster (d) Third Cluster (e) Histogram
We have segmented the input image into three clusters depending on the data provided by the histogram shown in Fig. 2(e), Fig. 3(e) and Fig. 4(e). Fig. 2(a), Fig. 3(a) and Fig. 4(a) show the preprocessed image filtered by Gaussian low-pass filter smoothing operator. Among the images in different clusters second cluster correctly segments the defective portion of the image whereas the first cluster demonstrates the non-defective part of the fruit. Fig. 5, Fig. 6 and Fig. 7 illustrate the resultant images obtained from FCM.
The filtered images are shown in Fig. 5(a), Fig. 6(a) and Fig. 7(a). The FCM segmented images with three clusters are shown in Fig. 5(b), Fig. 6(b) and Fig. 7(b). The amount of defect in a given sample using K-Means and FCM clustering is tabulated in Table 1. FCM, being an unsupervised fuzzy clustering algorithm, is motivated by the need to find interesting patterns or groupings in a given set of data. The cluster allocation in FCM is based on the high membership value and less on distance.

<table>
<thead>
<tr>
<th>SI. No.</th>
<th>Data Sample</th>
<th>K-Means</th>
<th>FCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Figure 1(a)</td>
<td>60%</td>
<td>52%</td>
</tr>
<tr>
<td>2</td>
<td>Figure 1(b)</td>
<td>44%</td>
<td>40%</td>
</tr>
<tr>
<td>3</td>
<td>Figure 1(c)</td>
<td>10%</td>
<td>9%</td>
</tr>
</tbody>
</table>

6. CONCLUSION

The automated inspection of agricultural products, fruits in particular, is an important process as it reduces human interaction with the inspected goods, classify generally faster than humans and tend to be more consistent in classification. The segmentation of defects in fruits is proposed and evaluated in this paper. The proposed approach used K-Means clustering and Fuzzy C-Means clustering to segment defects in apple images. Experimental results suggest that the algorithms are able to segment the defects more accurately. The major drawback of K-Means is that, there may be a skewed clustering result if the cluster number estimate is incorrect. It is overcome to certain extent in the proposed method by determining the number of clusters using the histogram of the image. The image is also pre-processed to remove noise.

7. REFERENCES

