THE SCHEME OF THREE-LEVEL INVERTERS BASED ON SVPWM
OVERMODULATION TECHNIQUE FOR VECTOR CONTROLLED
INDUCTION MOTOR DRIVES

Pradeep B Jyoti†, J.Amarnath‡‡, and D.Subbarayudu‡‡‡
†Head of the Electrical Engineering Department, Shirdi Sai Engineering College, Bangalore, India
‡‡Professor in Electrical Engineering Department, JNTU, Hyderabad, India
‡‡‡Professor in Electrical Engineering Department, G. Pulla Reddy Engineering, Kurnool, India

ABSTRACT

This paper describes a Space vector PWM over modulation scheme of NPC type three-level inverter for traction drives which extends the modulation index from MI=0.907 to unity. SVPWM strategy is organized by two operation modes of under-modulation and over-modulation. The switching states under the under-modulation modes are determined by dividing them with two linear regions and one hybrid region the same as the conventional three-level inverter. On the other hand, under the over-modulation mode, they are generated by doing it with two over-modulation regions the same as the conventional over-modulation strategy of a two level inverter. Following the description of over-modulation scheme of a three-level inverter, the system description of a vector controlled induction motor for traction drives has been discussed. Finally, the validity of the proposed modulation algorithm has been verified through simulation and experimental results.

Keywords: Overmodulation, SVPWM, NPC type three-level inverter, indirect vector control

1. INTRODUCTION

This paper presents an overmodulation scheme of NPC type three-level inverter and an indirect vector control of induction motor for traction drives. Recently railway vehicles have operated at higher speeds within the limited plant for higher efficiency. The
conventional railway vehicle has used the vector control to the modulation factor of 90.7% with space vector PWM (SVPWM) and used the slip-frequency control to six-step mode. The slip-frequency control is suitable for traction drives, because the drive patterns of electric railway systems do not request a rapid change. However, that control cannot realize a quick torque response. In high-speed trains, the slip between train wheels and rails is likely to occur, and the fast torque control is crucial to overcome this slip problem. The vector control provides an instantaneous torque response because it is possible to control the flux and torque of the induction motor independently. An overmodulation scheme of SVPWM with modulation factor 90.7% to unity is essential if the drive can meet the operation at extended speed including the field weakening region in vector control with higher torque and power characteristics. The overmodulation strategy of a two-level inverter and its implementation has been studied.

The NPC type three-level inverter has three output voltage levels. With this circuit configuration, the voltage stress on its power switching devices is half that of the conventional two-level inverter. Because of this nature, it has been applied to the medium and high voltage drives. In addition to the capability to handle the high voltage, the NPC type three-level inverter has favorable features; lower line to line and common-mode voltage steps, more frequent voltage steps in one carrier cycle, and lower ripple components in the output current at the same carrier frequency. These features lead to significant advantages for motor drives over the conventional two-level inverters in the form of lower stresses to the motor windings and bearings, less influence of noise to the adjacent equipment, etc. Recently, most Japanese electrical train companies have developed a three-level PWM inverter drive system for traction drives. It is well known that the three-level configuration has greatly reduced the size of the main transformer and traction-motor, the current harmonics in the signaling band, the acoustic noise, and the volume and weight of the equipment. Also, the power rating of the system can be increased. However, SVPWM of a three-level inverter is considerably more complex than that of a two-level inverter due to the large number of inverter switching states. Besides, there is the problem of neutral point voltage balancing. There have been some studies on the over-modulation strategy of three-level inverters, but few of them are focused on the application of traction drives. Most of them are limited to the modulation itself and lack of experimental implementation.

This paper describes a SVPWM over-modulation scheme of the NEUTRAL POINT CONVERTER type three-level inverter that extends the modulation index from MI=0.907 to unity. SVPWM strategy is organized by two operation modes of under-modulation and over-modulation. The switching states under the under-modulation mode are determined by dividing them with two linear regions and one hybrid region the same as the conventional three-level inverter. On the other hand, under the over-modulation mode, they are generated by doing this with two over-modulation regions which is the same as the conventional over-modulation strategy of the two-level inverter. Following the description of the over-modulation scheme of the three-level inverter, the system description of a vector controlled induction motor for traction drives has been discussed. Finally, the ability of the proposed modulation algorithm has been verified through the simulation and experimental results.

2. NPC TYPE THREE-LEVEL INVERTER

The NPC type three-level inverter has three output voltage levels. With this circuit configuration, the voltage stress on its power switching devices is half that of the
conventional two-level inverter. Because of this nature, it has been applied to the medium and high voltage drives. In addition to the capability to handle the high voltage, the NPC type three-level inverter has favorable features; lower line to line and common-mode voltage steps, more frequent voltage steps in one carrier cycle, and lower ripple components in the output current at the same carrier frequency. These features lead to significant advantages for motor drives over the conventional two-level inverters in the form of lower stresses to the motor windings and bearings, less influence of noise to the adjacent equipment, etc.

![Schematic diagram of three-level inverter with induction motor load.](image)

Fig. 1. Schematic diagram of three-level inverter with induction motor load.

Fig. 1 shows the schematic diagram of a three-level IGBT inverter with induction motor load. For power conversion, a similar unit is connected at the DC input in an inverse manner.

The phase U, for example, gets the state P when the switches U1 and U2 are on, whereas it gets the state N when the switches U3 and U4 are on. At neutral-point clamping, the phase gets the O state when either U2 or U3 conducts depending on positive or negative phase current polarity, respectively. The switching states of the three-level inverter can be summarized as shown in Table 1, where U, V, and W are the phases and P, N, and O are dc-bus points.

The total switching states consist of 27 and can be described as shown in Fig. 2. The corresponding 27 switching states of the three-level inverter indicating each state with the combination of P, N, and O states are classified by four voltage vectors according to the magnitude value of voltage vector. The four voltage vectors are separated by zero vector (ZV), small vector (SV), middle vector (MV), and large vector (LV). These four voltage vectors are summarized in Table 2. Evidently, neutral current will flow through the point O in all the states except the zero states and the outer hexagon has six large sector(A-F) as shown and each large sector has four small sector(1-4), giving altogether 24 regions of operation.

An overmodulation strategy for higher voltage utilization is driven from the developing Fourier series expansion of the reference phase voltage waveform which generates the desired fundamental component. According to the modulation index (MI), the PWM control range can be divided into three regions as one linear region (0MI0.907) of undermodulation mode and two overmodulation modes of overmodulation region I (0.907 MI and overmodulation region II) (0.952 □ MI □ 1) as shown in Fig. 3.
Table 1 Switching states of three-level inverter

<table>
<thead>
<tr>
<th>Switching State</th>
<th>Gate-(X) X-1</th>
<th>Gate-(X) X-2</th>
<th>Gate-(X) X-3</th>
<th>Gate-(X) X-4</th>
<th>$V_{(x)}$ [Node voltage]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>$+\frac{V_{dc}}{2}$</td>
</tr>
<tr>
<td>O</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>$-\frac{V_{dc}}{2}$</td>
</tr>
</tbody>
</table>

Table 2 Voltage vectors according to switching states

<table>
<thead>
<tr>
<th>Switching vector</th>
<th>Switching state (U V W)</th>
<th>Capacitor state</th>
<th>Voltage vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZV</td>
<td>(PPP) (000) (NNN)</td>
<td>0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>USV</td>
<td>(P00) (PPO) (OP0)</td>
<td>- +</td>
<td>$\frac{V_{dc}}{3}$</td>
</tr>
<tr>
<td>SV</td>
<td>(OPP) (00P) (POP)</td>
<td>+ -</td>
<td>$\frac{V_{dc}}{3}$</td>
</tr>
<tr>
<td>LSV</td>
<td>(0NN) (00N) (NON)</td>
<td>- +</td>
<td>$\frac{V_{dc}}{3}$</td>
</tr>
<tr>
<td>MV</td>
<td>(PON) (OPN) (NP0)</td>
<td>+/-</td>
<td>$\frac{V_{dc}}{3}$</td>
</tr>
<tr>
<td>LV</td>
<td>(NOO) (ON0) (ONO)</td>
<td>+/-</td>
<td>$\frac{2V_{dc}}{3}$</td>
</tr>
</tbody>
</table>
Fig. 2. Space voltage vector diagram of NPC type three-level Inverter

2.1 Undermodulation mode (0 ≤ MI ≤ 0.907)

The linear region is located in the inscribed circle of an outer hexagon. It consists of linear region mode I (0 ≤ MI ≤ 0.433), linear region II (0.5 ≤ MI ≤ 0.907), and their interfaced hybrid region (0.433 ≤ MI ≤ 0.5). Linear region mode I is located in the inscribed circle of inner hexagon.

The Hybrid region is located between the inscribed circle of inner hexagon and the circumscribed circle of the inner hexagon. Linear region mode II is located between the circumscribed circle of inner hexagon and the inscribed circle of outer hexagon. Linear region mode I has 3 steps output line-to-line voltage like as 2-level inverter. Linear region mode II has 5 steps output line-to-line voltage. And hybrid region has the characteristics of linear region mode I and linear region mode II.
Figure 4 shows one of six large sectors in the linear region. Each large triangle can be divided into four small sectors 1, 2, 3, and 4. In SVPWM method, the inverter voltage vectors corresponding to the apexes of the triangle which includes the voltage reference vector are generally selected to minimize the harmonic components of the output line-to-line voltage.

Table 3 shows the analytical time expression for all the small sectors in the large sector A. These time intervals can be applied to the other large sectors by a phase shift of the voltage reference vector. These time intervals are distributed appropriately so as to generate the symmetrical PWM pulses with a neutral-point voltage balancing. Note that the sequence in opposite sectors (A-D, B-E and C-F) is selected to be of a complimentary nature for the voltage balancing of a neutral-point.

<table>
<thead>
<tr>
<th>small sector</th>
<th>T_a</th>
<th>T_b</th>
<th>T_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$2kT_s \sin \left(\frac{\pi}{3} - \theta_0 \right)$</td>
<td>$T_s \left[1 - 2k \sin(\theta_0 + \frac{\pi}{3}) \right]$</td>
<td>$2kT_s \sin \theta_0$</td>
</tr>
<tr>
<td>2</td>
<td>$2T_s \left[1 - k \sin(\theta_0 + \frac{\pi}{3}) \right]$</td>
<td>$2kT_s \sin \theta_0$</td>
<td>$T_s \left[2k \sin\left(\frac{\pi}{3} - \theta_0 \right) - 1 \right]$</td>
</tr>
<tr>
<td>3</td>
<td>$T_s \left[1 - 2k \sin \theta_0 \right]$</td>
<td>$T_s \left[2k \sin(\theta_0 + \frac{\pi}{3}) - 1 \right]$</td>
<td>$T_s \left[2k \sin(\theta_0 - \frac{\pi}{3}) + 1 \right]$</td>
</tr>
<tr>
<td>4</td>
<td>$T_s \left[2k \sin \theta_0 - 1 \right]$</td>
<td>$2kT_s \sin \left(\frac{\pi}{3} - \theta_0 \right)$</td>
<td>$2T_s \left[1 - k \sin(\theta_0 + \frac{\pi}{3}) \right]$</td>
</tr>
</tbody>
</table>

T_s : sampling time for reference vector

$k = \sqrt{3} \frac{V}{Vdc} = \left(2\sqrt{3} / \pi \right)$ λ : modulation amplitude ratio
2.2 Over modulation mode (0.907 MI 0.952)

1) Over-modulation region I (0.907 MI 0.952)

In the over-modulation region I, the voltage reference vector \(V^* \) exceeds the outer hexagon which is the boundary of making a maximum voltage value. So \(V^* \) is boosted up to \(V_c^* \) for the compensation of voltage loss due to the excess region. Figure 5 presents the trajectory of \(V^* \), \(V_c^* \), and \(V_r^* \) which is the actual reference vector applying to control in the time domain. The angle \(\theta_r \) is the reference angle which is an intersection of \(V_c^* \) and boundary of the hexagon. The regions of \(V_r^* \) present four kinds of equations per \(\pi/2 \) for the angle of the voltage reference vector, as shown in (1) to (4).

In both side regions of each triangle sector to is used to compensate the voltage loss due to the excess of the outer hexagon. Plus it generates the maximum voltage value to follow the outer hexagon between those two regions. The value of taking the fundamental component of \(V_r^* \) is directly proportional to MI. \(V_r^* \) is presented in Fig. 3.

\[
\begin{align*}
J_1 & = \frac{V}{\sqrt{3}} \tan \theta, \quad 0 \leq \theta \leq \left[\frac{\pi}{6} - \alpha_r \right] \\
J_2 & = \frac{V}{\sqrt{3} \cos \left(\frac{\pi}{6} - \phi \right)} \sin \theta, \quad \left[\frac{\pi}{6} \right] \leq \theta \leq \left[\frac{\pi}{2} + \phi \right] \\
J_3 & = \frac{V}{\sqrt{3} \cos \left(\frac{\pi}{2} \right)} \sin \theta, \quad \left[\frac{\pi}{2} \right] \leq \theta \leq \left[\frac{3\pi}{2} + \phi \right] \\
J_4 & = \frac{V}{\sqrt{3} \cos \left(-\alpha_r \right)} \sin \theta, \quad \left[\frac{3\pi}{2} - \alpha_r \right] \leq \theta \leq \left[\frac{\pi}{2} \right] \\
\end{align*}
\]

(1) to (4)

Where \(\theta = \omega t \) and \(\omega_r \) is an angular velocity of the voltage reference vector.

Expanding from (1) to (4) in the Fourier series and taking its fundamental component, the resultant equation can be expressed as

\[
\mathcal{F}(\alpha_r) = \frac{4}{\pi} \left[f_1 \sin \phi \sin \phi + f_2 \sin \phi \sin \phi + f_3 \sin \phi \sin \phi + f_4 \sin \phi \sin \phi \right]
\]

(5)
Where A, B, C and D denote integral ranges of each voltage function as shown in Fig. 4.

\(F(\alpha_r) \) represents the peak value of the fundamental component, it can be calculated from the definition of the modulation index.

\[
F(\alpha_r) = \frac{2}{\pi} V_r \cdot MI
\]

Thus, a relationship between the MI and the reference angle which gives a linearity of the output voltage is determined. The equation of the piecewise-linear reference angle \(\alpha_r \) as a function of the MI is shown from (7) to (9).

\[
\alpha_r = -30.23 \times MI + 27.04 \quad (0.9068 \leq MI \leq 0.9095) \quad (7)
\]

\[
\alpha_r = -8.580 \times MI + 8.230 \quad (0.9095 \leq MI \leq 0.9485) \quad (8)
\]

\[
\alpha_r = -26.43 \times MI + 25.15 \quad (0.9485 \leq MI \leq 0.9517) \quad (9)
\]

As established in Fig. 4, the upper limit in the over-modulation region I is \(\alpha_r \) \(\leq 0\). MI at this condition is 0.952, which is driven in (5) and (6). Therefore when the MI is higher than 0.952, another over-modulation algorithm is necessary.

2) Over-modulation region II (0.952 \(\leq \) MI \(\leq \) 1)

Under such conditions, output voltages higher than MI=0.952 can not be generated since there exists no more surplus area to compensate for the voltage loss even though the modulation index is increased above that point. As a result, over the compensation limit by using the technique in the over-modulation region I, \(V_r^* \) is held during holding angle \(\theta_h \) for the compensation of voltage region II. To control the holding angle of the time interval, the active switching state remains at the vertices which uniquely control the fundamental voltage. A basic concept of the over-modulation region II is similar to (5) and (6). Regions of \(V_r^* \) present four kinds of equations per \(\pi/2 \) as the angle of reference voltage vector, \(\alpha_r \), as shown from (10) to (13). The value of the fundamental component of \(V_r^* \) is directly proportional to MI. Figure 6 shows the trajectory of the reference voltage vector and phase voltage waveform in the over-modulation region II.

\[
\beta_1 = \frac{V_r^*}{\sqrt{3}} \tan \alpha_r \quad 0 \leq \theta \leq \left(\frac{\pi}{6} - \alpha_r \right)
\]

\[
\beta_2 = \frac{V_r^*}{3} \left(\frac{\pi}{6} - \alpha_r \right) \quad \left(\frac{\pi}{6} - \alpha_r \right) \leq \theta \leq \left(\frac{\pi}{6} + \alpha_r \right)
\]

\[
\beta_3 = \frac{V_r^*}{\sqrt{3} \cos \alpha_r} \quad \left(\frac{\pi}{6} + \alpha_r \right) \leq \theta \leq \left(\frac{\pi}{2} - \alpha_r \right)
\]

\[
\beta_4 = \frac{2V_r^*}{3} \quad \left(\frac{\pi}{2} - \alpha_r \right) \leq \theta \leq \frac{\pi}{2}
\]
Where
\[
\alpha_p = \frac{\pi}{\pi - 6\alpha_q}, \quad \text{and} \quad \alpha_{p} = (1 - \frac{6}{\pi})\theta
\]
In (14), \(\theta\) and \(\alpha_p\) are phase angles of the actual voltage.
Reference vector rotating as shown in Fig. 7, which is simply driven from the proportional relationship for angular displacements of these two vectors as
\[
\theta = \frac{\pi}{6} \left(\frac{\pi}{6} - \alpha_q \right)
\]

Thereafter, the actual voltage reference vector is held at the vertex while the fundamental one is continuously rotating from \(0\) to \(\pi/6\). Also the piecewise-linear holding angles \(\alpha_h\) as a function of the MI are shown as from (16) to (18). \(\alpha_h\) to 6.40 \(MI\) 6.090.9517 \(MI\) 0.9800 (16)

Fig. 6. Trajectory of reference voltage vector and phase voltage waveform in over-modulation region II.

Fig. 7. Angular displacement of reference and actual voltage Vector.
3. SIMULATION RESULTS

The validity of the proposed algorithm is verified through the simulation for the three-level inverter with induction motor.

The indirect vector control method utilizes the motor velocity feedback and a feed-forward slip reference to provide the instantaneous torque control. A schematic diagram of indirect vector control of the induction motor with PI controllers is shown in Fig. 8. The feed-forward EMF block in current controlled VSI is required to produce the appropriated stator voltage, and the flux reference block is included to increase the response speed beyond the nominal speed [13]-[15].

![Schematic diagram of indirect vector control of induction motor.](image)

Fig. 8. Schematic diagram of indirect vector control of induction motor.

![Response of Current Controllers under Repeated Motor Speed Change Between 500rpm and 1000rpm For; (A) Flux Component, (B) Torque Component.](image)

Fig. 9. Response of Current Controllers under Repeated Motor Speed Change Between 500rpm and 1000rpm For; (A) Flux Component, (B) Torque Component.
The simulation results of indirect vector control are shown in Figs. 9 and 10. Figure 9 shows the response of the current controller for flux component current and torque component current when the reference motor speed changes from 500rpm to 1000rpm frequently. As the speed reference value changes, the torque component current is regulated to generate the positive and negative value in acceleration and deceleration regions. The flux component current is also well regulated to follow the reference value without any change under the speed change condition. Figure 10 shows the magnitude and phase of reference voltage vector in stationary reference frame during the transient state of motor speed change. They change in linear relation to the speed change.

The simulation results of operation for the three-level

Fig. 10. Voltage reference of NPC type three-level inverter;
(a)Magnitude Of Voltage Reference In Stationary Frame, (b) Angle Of That, (C) dq Components of Voltage Vector in Stationary Frame

Fig. 11. Simulation results at MI=0.369; (a) line to line voltage and (b) phase current
Fig. 12. Simulation results at MI=0.767; (a) line to line voltage and (b) phase current
Fig. 13. Simulation results at MI=0.936; (a) line to line voltage and (b) phase current

Fig. 14. Simulation results at MI=0.974; (a) line to line voltage and (b) phase current
Inverters following each region are shown in from Fig. 11 to 15. These figures show the results of phase current and line-to-line voltage waveforms when MI is 0.369 (Fig. 11) in the linear region mode I, 0.767 (Fig. 12) in the linear region mode II, 0.936 (Fig. 13) in the over-modulation region I, and 0.974 (Fig. 14) and 1 (Fig. 15) in the over-modulation region II, respectively. In Fig. 11, the line-to-line voltage has the same characteristic as that of two-level inverter. In Fig. 12, the line-to-line voltage has 5 steps so the harmonic level is much less than that of the two-level inverter. In Fig. 13, as an example of overmodulation region I, one of two sectors of 2 and 4 is selected as a small sector for the large sector A. As shown in Fig. 15, it is operated as a six-step mode at MI=1, and then the holding angle of each small sector is \(\frac{\pi}{6} \).

5. CONCLUSION

In this paper SVPWM technique for an NPC type 3-level inverter from linear region to six-step operation was proposed. With this proposed over-modulation strategy, the output voltage of the three-level inverter can be controlled in an extended range from MI=0.907 to the unit. The proposed algorithm was verified through simulation results with the phase current and line-to-line voltage waveforms as the typical values of the modulation index from the linear region to the over-modulation region.
REFERENCES

AUTHORS’ INFORMATION

Pradeep B Jyoti graduated from Karnataka University Dharwad, Karnataka in the year 1986, M.E from Gulbarga University, Gulbarga in the year 1989. He is currently pursuing Ph.D at Jawaharlal Nehru Technological University, Hyderabad, India. He is presently working as Professor & Head in the Department of Electrical and Electronics Shirdi Sai Engineering College, Bangalore, Karnataka, India. His research areas include SVPWM techniques, and Vector control of electrical drives & machines.

Dr. J. Amarnath graduated from Osmania University in the year 1982, M.E from Andhra University in the year 1984 and Ph.D from J.N.T.University, Hyderabad in the year 2001. He is presently Professor of the Electrical Engineering Department, JNTU College of Engineering, Hyderabad. He presented more than 70 research papers in various national and international conferences and journals. His research areas include Gas Insulated Substations, High Voltage Engineering, Power Systems and Electrical Drives.

Dr. D. Subba Rayudu received B.E degree in Electrical Engineering from S.V. University, Tirupati, India in 1960, M.Sc. (Engg) degree from Madras University in 1962 and Ph.D. degree from Indian Institute of Technology, Madras, India in 1977. He is at present working as professor in Department of Electrical Engineering at G. Pulla Reddy Engineering College, Kurnool, India. His research interests include Electrical machines, Power Electronics and electrical drives.